18,423 research outputs found

    Optimized Neural Networks to Search for Higgs Boson Production at the Tevatron

    Get PDF
    An optimal choice of proper kinematical variables is one of the main steps in using neural networks (NN) in high energy physics. Our method of the variable selection is based on the analysis of a structure of Feynman diagrams (singularities and spin correlations) contributing to the signal and background processes. An application of this method to the Higgs boson search at the Tevatron leads to an improvement in the NN efficiency by a factor of 1.5-2 in comparison to previous NN studies.Comment: 4 pages, 4 figures, partially presented in proceedings of ACAT'02 conferenc

    The n-body problem in General Relativity up to the second post-Newtonian order from perturbative field theory

    Full text link
    Motivated by experimental probes of general relativity, we adopt methods from perturbative (quantum) field theory to compute, up to certain integrals, the effective lagrangian for its n-body problem. Perturbation theory is performed about a background Minkowski spacetime to O[(v/c)^4] beyond Newtonian gravity, where v is the typical speed of these n particles in their center of energy frame. For the specific case of the 2 body problem, the major efforts underway to measure gravitational waves produced by in-spiraling compact astrophysical binaries require their gravitational interactions to be computed beyond the currently known O[(v/c)^7]. We argue that such higher order post-Newtonian calculations must be automated for these field theoretic methods to be applied successfully to achieve this goal. In view of this, we outline an algorithm that would in principle generate the relevant Feynman diagrams to an arbitrary order in v/c and take steps to develop the necessary software. The Feynman diagrams contributing to the n-body effective action at O[(v/c)^6] beyond Newton are derived.Comment: 39 pages. The Mathematica code used in this paper can be found at http://www.stargazing.net/yizen/PN.html Version 2: Slight re-wording of section on removal of accelerations in 2 PN lagrangian; comments added in conclusion; and typographical errors fixed. Article is similar to that published in PR

    Four-dimensional integration by parts with differential renormalization as a method of evaluation of Feynman diagrams

    Get PDF
    It is shown how strictly four-dimensional integration by parts combined with differential renormalization and its infrared analogue can be applied for calculation of Feynman diagrams.Comment: 6 pages, late

    Separable Structure of Many-Body Ground-State Wave Function

    Full text link
    We have investigated a general structure of the ground-state wave function for the Schr\"odinger equation for NN identical interacting particles (bosons or fermions) confined in a harmonic anisotropic trap in the limit of large NN. It is shown that the ground-state wave function can be written in a separable form. As an example of its applications, this form is used to obtain the ground-state wave function describing collective dynamics for NN trapped bosons interacting via contact forces.Comment: J. Phys. B: At. Mol. Opt. Phys. 33 (2000) (accepted for publication

    Supersymmetric pairing of kinks for polynomial nonlinearities

    Get PDF
    We show how one can obtain kink solutions of ordinary differential equations with polynomial nonlinearities by an efficient factorization procedure directly related to the factorization of their nonlinear polynomial part. We focus on reaction-diffusion equations in the travelling frame and damped-anharmonic-oscillator equations. We also report an interesting pairing of the kink solutions, a result obtained by reversing the factorization brackets in the supersymmetric quantum mechanical style. In this way, one gets ordinary differential equations with a different polynomial nonlinearity possessing kink solutions of different width but propagating at the same velocity as the kinks of the original equation. This pairing of kinks could have many applications. We illustrate the mathematical procedure with several important cases, among which the generalized Fisher equation, the FitzHugh-Nagumo equation, and the polymerization fronts of microtubulesComment: 13 pages, 2 figures, revised during the 2nd week of Dec. 200

    Magnetofossil Spike During the Paleocene-Eocene Thermal Maximum: Ferromagnetic Resonance, Rock Magnetic, and Electron Microscopy Evidence from Ancora, New Jersey, USA

    Get PDF
    Previous workers identified a magnetically anomalous clay layer deposited on the northern United States Atlantic Coastal Plain during the Paleocene-Eocene Thermal Maximum (PETM). The finding inspired the highly controversial hypothesis that a cometary impact triggered the PETM. Here we present ferromagnetic resonance (FMR), isothermal and anhysteretic remanent magnetization, first order reversal curve, and transmission electron microscopy analyses of late Paleocene and early Eocene sediments in drillcore from Ancora, New Jersey. A novel paleogeographic analysis applying a recent paleomagnetic pole from the Faeroe Islands indicates that New Jersey during the initial Eocene had a ~6-9 degrees lower paleolatitude (~27.3 degrees for Ancora) and a more zonal shoreline trace than in conventional reconstructions. Our investigations of the PETM clay from Ancora reveal abundant magnetite nanoparticles bearing signature traits of crystals produced by magnetotactic bacteria. This result, the first identification of ancient biogenic magnetite using FMR, argues that the anomalous magnetic properties of the PETM sediments are not produced by an impact. They instead reflect environmental changes along the eastern margin of North America during the PETM that led to enhanced production and/or preservation of magnetofossils
    corecore