2,155 research outputs found
Dynamics of Global Entanglement under Decoherence
We investigate the dynamics of global entanglement, the Meyer-Wallach
measure, under decoherence, analytically. We study two important class of
multi-partite entangled states, the Greenberger-Horne-Zeilinger and the W
state. We obtain exact results for various models of system-environment
interactions (decoherence). Our results shows distinctly different scaling
behavior for these initially entangled states indicating a relative robustness
of the W state, consistent with previous studies.Comment: 5 pages and 5 figure
Mechanisms of Spontaneous Current Generation in an Inhomogeneous d-Wave Superconductor
A boundary between two d-wave superconductors or an s-wave and a d-wave
superconductor generally breaks time-reversal symmetry and can generate
spontaneous currents due to proximity effect. On the other hand, surfaces and
interfaces in d-wave superconductors can produce localized current-carrying
states by supporting the T-breaking combination of dominant and subdominant
order parameters. We investigate spontaneous currents in the presence of both
mechanisms and show that at low temperature, counter-intuitively, the
subdominant coupling decreases the amplitude of the spontaneous current due to
proximity effect. Superscreening of spontaneous currents is demonstrated to be
present in any d-d (but not s-d) junction and surface with d+id' order
parameter symmetry. We show that this supercreening is the result of
contributions from the local magnetic moment of the condensate to the
spontaneous current.Comment: 4 pages, 5 figures, RevTe
Gravitational Lensing Signature of Long Cosmic Strings
The gravitational lensing by long, wiggly cosmic strings is shown to produce
a large number of lensed images of a background source. In addition to pairs of
images on either side of the string, a number of small images outline the
string due to small-scale structure on the string. This image pattern could
provide a highly distinctive signature of cosmic strings. Since the optical
depth for multiple imaging of distant quasar sources by long strings may be
comparable to that by galaxies, these image patterns should be clearly
observable in the next generation of redshift surveys such as the Sloan Digital
Sky Survey.Comment: 4 pages, revtex with 3 postscript figures include
Gravitational-Wave Stochastic Background Detection with Resonant-Mass Detectors
In this paper we discuss how the standard optimal Wiener filter theory can be
applied, within a linear approximation, to the detection of an isotropic
stochastic gravitational-wave background with two or more detectors. We apply
then the method to the AURIGA-NAUTILUS pair of ultra low temperature bar
detectors, near to operate in coincidence in Italy, obtaining an estimate for
the sensitivity to the background spectral density of $\simeq 10^{-49}\
Hz^{-1}\simeq 8\times10^{-5}\times\rho_c\rho_c\simeq1.9 \times 10^{-26}\
kg/m^3\simeq 6
\times10^{-5}\times\rho_c\simeq 2\times10^{-5}\times
\rho_c\simeq 2 \times10^{-6}\rho_c$.Comment: 32 pages, postscript file, also available at
http://axln01.lnl.infn.it/reports/stoch.htm
Entanglement of electrons in interacting molecules
Quantum entanglement is a concept commonly used with reference to the
existence of certain correlations in quantum systems that have no classical
interpretation. It is a useful resource to enhance the mutual information of
memory channels or to accelerate some quantum processes as, for example, the
factorization in Shor's Algorithm. Moreover, entanglement is a physical
observable directly measured by the von Neumann entropy of the system. We have
used this concept in order to give a physical meaning to the electron
correlation energy in systems of interacting electrons. The electronic
correlation is not directly observable, since it is defined as the difference
between the exact ground state energy of the many--electrons Schroedinger
equation and the Hartree--Fock energy. We have calculated the correlation
energy and compared with the entanglement, as functions of the nucleus--nucleus
separation using, for the hydrogen molecule, the Configuration Interaction
method. Then, in the same spirit, we have analyzed a dimer of ethylene, which
represents the simplest organic conjugate system, changing the relative
orientation and distance of the molecules, in order to obtain the configuration
corresponding to maximum entanglement.Comment: 15 pages, 7 figures, standard late
Observing Long Cosmic Strings Through Gravitational Lensing
We consider the gravitational lensing produced by long cosmic strings formed
in a GUT scale phase transition. We derive a formula for the deflection of
photons which pass near the strings that reduces to an integral over the light
cone projection of the string configuration plus constant terms which are not
important for lensing. Our strings are produced by performing numerical
simulations of cosmic string networks in flat, Minkowski space ignoring the
effects of cosmological expansion. These strings have more small scale
structure than those from an expanding universe simulation - fractal dimension
1.3 for Minkowski versus 1.1 for expanding - but share the same qualitative
features. Lensing simulations show that for both point-like and extended
objects, strings produce patterns unlike more traditional lenses, and, in
particluar, the kinks in strings tend to generate demagnified images which
reside close to the string. Thus lensing acts as a probe of the small scale
structure of a string. Estimates of lensing probablity suggest that for string
energy densities consistant with string seeded structure formation, on the
order of tens of string lenses should be observed in the Sloan Digital Sky
Survey quasar catalog. We propose a search strategy in which string lenses
would be identified in the SDSS quasar survey, and the string nature of the
lens can be confirmed by the observation of nearby high redshift galaxies which
are also be lensed by the string.Comment: 24 pages revtex with 12 postscript firgure
A Comprehensive Archival Search for Counterparts to Ultra-Compact High Velocity Clouds: Five Local Volume Dwarf Galaxies
We report five Local Volume dwarf galaxies (two of which are presented here
for the first time) uncovered during a comprehensive archival search for
optical counterparts to ultra-compact high velocity clouds (UCHVCs). The UCHVC
population of HI clouds are thought to be candidate gas-rich, low mass halos at
the edge of the Local Group and beyond, but no comprehensive search for stellar
counterparts to these systems has been presented. Careful visual inspection of
all publicly available optical and ultraviolet imaging at the position of the
UCHVCs revealed six blue, diffuse counterparts with a morphology consistent
with a faint dwarf galaxy beyond the Local Group. Optical spectroscopy of all
six candidate dwarf counterparts show that five have an H-derived
velocity consistent with the coincident HI cloud, confirming their association,
the sixth diffuse counterpart is likely a background object. The size and
luminosity of the UCHVC dwarfs is consistent with other known Local Volume
dwarf irregular galaxies. The gas fraction () of the five
dwarfs are generally consistent with that of dwarf irregular galaxies in the
Local Volume, although ALFALFA-Dw1 (associated with ALFALFA UCHVC
HVC274.68+74.70123) has a very high 40. Despite the
heterogenous nature of our search, we demonstrate that the current dwarf
companions to UCHVCs are at the edge of detectability due to their low surface
brightness, and that deeper searches are likely to find more stellar systems.
If more sensitive searches do not reveal further stellar counterparts to
UCHVCs, then the dearth of such systems around the Local Group may be in
conflict with CDM simulations.Comment: 18 pages, 4 tables, 4 figures, ApJ Accepte
Scaling Property of the global string in the radiation dominated universe
We investigate the evolution of the global string network in the radiation
dominated universe by use of numerical simulations in 3+1 dimensions. We find
that the global string network settles down to the scaling regime where the
energy density of global strings, , is given by with the string tension per unit length and the scaling parameter,
, irrespective of the cosmic time. We also find that the
loop distribution function can be fitted with that predicted by the so-called
one scale model. Concretely, the number density, , of the loop with
the length, , is given by
where and is related with the Nambu-Goldstone(NG)
boson radiation power from global strings, , as with
. Therefore, the loop production function also scales and
the typical scale of produced loops is nearly the horizon distance. Thus, the
evolution of the global string network in the radiation dominated universe can
be well described by the one scale model in contrast with that of the local
string network.Comment: 18 pages, 9 figures, to appear in Phys. Rev.
Observation of Fluctuation-Dissipation-Theorem Violations in a Structural Glass
The fluctuation-dissipation theorem (FDT), connecting dielectric
susceptibility and polarization noise was studied in glycerol below its glass
transition temperature Tg. Weak FDT violations were observed after a quench
from just above to just below Tg, for frequencies above the alpha peak.
Violations persisted up to 10^5 times the thermal equilibration time of the
configurational degrees of freedom under study, but comparable to the average
relaxation time of the material. These results suggest that excess energy flows
from slower to faster relaxing modes.Comment: Improved discussion; final version to appear in Phys. Rev. Lett. 4
pages, 5 PS figures, RevTe
Evolution of a global string network in a matter dominated universe
We evolve the network of global strings in the matter-dominated universe by
means of numerical simulations. The existence of the scaling solution is
confirmed as in the radiation-dominated universe but the scaling parameter
takes a slightly smaller value, , which is
defined as with the energy density of
global strings and the string tension per unit length. The change of
from the radiation to the matter-dominated universe is consistent with
that obtained by Albrecht and Turok by use of the one-scale model. We also
study the loop distribution function and find that it can be well fitted with
that predicted by the one-scale model, where the number density of
the loop with the length is given by with and . Thus, the evolution of the
global string network in the matter-dominated universe can be well described by
the one-scale model as in the radiation-dominated universe.Comment: 10 pages, 5 figure
- âŠ