284 research outputs found

    Detrended fluctuation analysis for fractals and multifractals in higher dimensions

    Full text link
    One-dimensional detrended fluctuation analysis (1D DFA) and multifractal detrended fluctuation analysis (1D MF-DFA) are widely used in the scaling analysis of fractal and multifractal time series because of being accurate and easy to implement. In this paper we generalize the one-dimensional DFA and MF-DFA to higher-dimensional versions. The generalization works well when tested with synthetic surfaces including fractional Brownian surfaces and multifractal surfaces. The two-dimensional MF-DFA is also adopted to analyze two images from nature and experiment and nice scaling laws are unraveled.Comment: 7 Revtex pages inluding 11 eps figure

    Multifractal Properties of Price Fluctuations of Stocks and Commodities

    Full text link
    We analyze daily prices of 29 commodities and 2449 stocks, each over a period of ≈15\approx 15 years. We find that the price fluctuations for commodities have a significantly broader multifractal spectrum than for stocks. We also propose that multifractal properties of both stocks and commodities can be attributed mainly to the broad probability distribution of price fluctuations and secondarily to their temporal organization. Furthermore, we propose that, for commodities, stronger higher order correlations in price fluctuations result in broader multifractal spectra.Comment: Published in Euro Physics Letters (14 pages, 5 figures

    Nonlinear Volatility of River Flux Fluctuations

    Full text link
    We study the spectral properties of the magnitudes of river flux increments, the volatility. The volatility series exhibits (i) strong seasonal periodicity and (ii) strongly power-law correlations for time scales less than one year. We test the nonlinear properties of the river flux increment series by randomizing its Fourier phases and find that the surrogate volatility series (i) has almost no seasonal periodicity and (ii) is weakly correlated for time scales less than one year. We quantify the degree of nonlinearity by measuring (i) the amplitude of the power spectrum at the seasonal peak and (ii) the correlation power-law exponent of the volatility series.Comment: 5 revtex pages, 6 page

    Level statistics and eigenfunctions of pseudointegrable systems: dependence on energy and genus number

    Full text link
    We study the level statistics (second half moment I0I_0 and rigidity Δ3\Delta_3) and the eigenfunctions of pseudointegrable systems with rough boundaries of different genus numbers gg. We find that the levels form energy intervals with a characteristic behavior of the level statistics and the eigenfunctions in each interval. At low enough energies, the boundary roughness is not resolved and accordingly, the eigenfunctions are quite regular functions and the level statistics shows Poisson-like behavior. At higher energies, the level statistics of most systems moves from Poisson-like towards Wigner-like behavior with increasing gg. Investigating the wavefunctions, we find many chaotic functions that can be described as a random superposition of regular wavefunctions. The amplitude distribution P(ψ)P(\psi) of these chaotic functions was found to be Gaussian with the typical value of the localization volume Vloc≈0.33V_{\rm{loc}}\approx 0.33. For systems with periodic boundaries we find several additional energy regimes, where I0I_0 is relatively close to the Poisson-limit. In these regimes, the eigenfunctions are either regular or localized functions, where P(ψ)P(\psi) is close to the distribution of a sine or cosine function in the first case and strongly peaked in the second case. Also an interesting intermediate case between chaotic and localized eigenfunctions appears

    The Visibility Graph: a new method for estimating the Hurst exponent of fractional Brownian motion

    Full text link
    Fractional Brownian motion (fBm) has been used as a theoretical framework to study real time series appearing in diverse scientific fields. Because its intrinsic non-stationarity and long range dependence, its characterization via the Hurst parameter H requires sophisticated techniques that often yield ambiguous results. In this work we show that fBm series map into a scale free visibility graph whose degree distribution is a function of H. Concretely, it is shown that the exponent of the power law degree distribution depends linearly on H. This also applies to fractional Gaussian noises (fGn) and generic f^(-b) noises. Taking advantage of these facts, we propose a brand new methodology to quantify long range dependence in these series. Its reliability is confirmed with extensive numerical simulations and analytical developments. Finally, we illustrate this method quantifying the persistent behavior of human gait dynamics.Comment: 5 pages, submitted for publicatio

    Sublocalization, superlocalization, and violation of standard single parameter scaling in the Anderson model

    Full text link
    We discuss the localization behavior of localized electronic wave functions in the one- and two-dimensional tight-binding Anderson model with diagonal disorder. We find that the distributions of the local wave function amplitudes at fixed distances from the localization center are well approximated by log-normal fits which become exact at large distances. These fits are consistent with the standard single parameter scaling theory for the Anderson model in 1d, but they suggest that a second parameter is required to describe the scaling behavior of the amplitude fluctuations in 2d. From the log-normal distributions we calculate analytically the decay of the mean wave functions. For short distances from the localization center we find stretched exponential localization ("sublocalization") in both, 1d and 2d. In 1d, for large distances, the mean wave functions depend on the number of configurations N used in the averaging procedure and decay faster that exponentially ("superlocalization") converging to simple exponential behavior only in the asymptotic limit. In 2d, in contrast, the localization length increases logarithmically with the distance from the localization center and sublocalization occurs also in the second regime. The N-dependence of the mean wave functions is weak. The analytical result agrees remarkably well with the numerical calculations.Comment: 12 pages with 9 figures and 1 tabl

    Comparing the performance of FA, DFA and DMA using different synthetic long-range correlated time series

    Get PDF
    Notwithstanding the significant efforts to develop estimators of long-range correlations (LRC) and to compare their performance, no clear consensus exists on what is the best method and under which conditions. In addition, synthetic tests suggest that the performance of LRC estimators varies when using different generators of LRC time series. Here, we compare the performances of four estimators [Fluctuation Analysis (FA), Detrended Fluctuation Analysis (DFA), Backward Detrending Moving Average (BDMA), and centred Detrending Moving Average (CDMA)]. We use three different generators [Fractional Gaussian Noises, and two ways of generating Fractional Brownian Motions]. We find that CDMA has the best performance and DFA is only slightly worse in some situations, while FA performs the worst. In addition, CDMA and DFA are less sensitive to the scaling range than FA. Hence, CDMA and DFA remain "The Methods of Choice" in determining the Hurst index of time series.Comment: 6 pages (including 3 figures) + 3 supplementary figure

    Characterization of Sleep Stages by Correlations of Heartbeat Increments

    Full text link
    We study correlation properties of the magnitude and the sign of the increments in the time intervals between successive heartbeats during light sleep, deep sleep, and REM sleep using the detrended fluctuation analysis method. We find short-range anticorrelations in the sign time series, which are strong during deep sleep, weaker during light sleep and even weaker during REM sleep. In contrast, we find long-range positive correlations in the magnitude time series, which are strong during REM sleep and weaker during light sleep. We observe uncorrelated behavior for the magnitude during deep sleep. Since the magnitude series relates to the nonlinear properties of the original time series, while the signs series relates to the linear properties, our findings suggest that the nonlinear properties of the heartbeat dynamics are more pronounced during REM sleep. Thus, the sign and the magnitude series provide information which is useful in distinguishing between the sleep stages.Comment: 7 pages, 4 figures, revte

    Global climate models violate scaling of the observed atmospheric variability

    Full text link
    We test the scaling performance of seven leading global climate models by using detrended fluctuation analysis. We analyse temperature records of six representative sites around the globe simulated by the models, for two different scenarios: (i) with greenhouse gas forcing only and (ii) with greenhouse gas plus aerosol forcing. We find that the simulated records for both scenarios fail to reproduce the universal scaling behavior of the observed records, and display wide performance differences. The deviations from the scaling behavior are more pronounced in the first scenario, where also the trends are clearly overestimated.Comment: Accepted for publishing in Physical Review Letter

    Generalized Hurst exponent and multifractal function of original and translated texts mapped into frequency and length time series

    Full text link
    A nonlinear dynamics approach can be used in order to quantify complexity in written texts. As a first step, a one-dimensional system is examined : two written texts by one author (Lewis Carroll) are considered, together with one translation, into an artificial language, i.e. Esperanto are mapped into time series. Their corresponding shuffled versions are used for obtaining a "base line". Two different one-dimensional time series are used here: (i) one based on word lengths (LTS), (ii) the other on word frequencies (FTS). It is shown that the generalized Hurst exponent h(q)h(q) and the derived f(α)f(\alpha) curves of the original and translated texts show marked differences. The original "texts" are far from giving a parabolic f(α)f(\alpha) function, - in contrast to the shuffled texts. Moreover, the Esperanto text has more extreme values. This suggests cascade model-like, with multiscale time asymmetric features as finally written texts. A discussion of the difference and complementarity of mapping into a LTS or FTS is presented. The FTS f(α)f(\alpha) curves are more opened than the LTS onesComment: preprint for PRE; 2 columns; 10 pages; 6 (multifigures); 3 Tables; 70 reference
    • …
    corecore