225 research outputs found

    Mating system of a Neotropical roost-making bat: the white-throated, round-eared bat, Lophostoma silvicolum (Chiroptera: Phyllostomidae)

    Get PDF
    The vast majority of bats strongly depend on, but do not make, shelters or roosts. We investigated Lophostoma silvicolum, which roosts in active termite nests excavated by the bats themselves, to study the relationship between roost choice and mating systems. Due to the hardness of the termite nests, roost-making is probably costly in terms of time and energy for these bats. Video-observations and capture data showed that single males excavate nests. Only males in good physical condition attracted females to the resulting roosts. Almost all groups captured from excavated nests were single male-multifemale associations, suggesting a harem structure. Paternity assignments based on ten polymorphic microsatellites, revealed a high reproductive success of 46% by nest-holding males. We suggest that the mating system of L. silvicolum is based on a resource-defense polygyny. The temperatures in the excavated nests are warm and stable, and might provide a suitable shelter for reproductive females. Reproductive success achieved by harem males appears to justify the time and effort required to excavate the nests. Reproductive success may thus have selected on an external male phenotype, the excavated nests, and have contributed to the evolution of an otherwise rare behavior in bat

    A multiply substituted G-H loop from foot-and-mouth disease virus in complex with a neutralizing antibody: A role for water molecules

    Get PDF
    The crystal structure of a 15 amino acid synthetic peptide, corresponding to the sequence of the major antigenic site A (G-H loop of VP1) from a multiple variant of foot-and-mouth disease virus (FMDV), has been determined at 2·3 resolution. The variant peptide includes four amino acid substitutions in the loop relative to the previously studied peptide representing FMDV C-S8c1 and corresponds to the loop of a natural FMDV isolate of subtype C1. The peptide was complexed with the Fab fragment of the neutralizing monoclonal antibody 4C4. The peptide adopts a compact fold with a nearly cyclic conformation and a disposition of the receptor-recognition motif Arg-Gly-Asp that is closely related to the previously determined structure for the viral loop, as part of the virion, and for unsubstituted synthetic peptide antigen bound to neutralizing antibodies. New structural findings include the observation that well-defined solvent molecules appear to play a major role in stabilizing the conformation of the peptide and its interactions with the antibody. Structural results are supported by molecular-dynamic simulations. The multiply substituted peptide developed compensatory mechanisms to bind the antibody with a conformation very similar to that of its unsubstituted counterpart. One water molecule, which for steric reasons could not occupy the same position in the unsubstituted antigen, establishes hydrogen bonds with three peptide amino acids. The constancy of the structure of an antigenic domain despite multiple amino acid substitutions has implications for vaccine design

    Anonymous and EST-based microsatellite DNA markers that transfer broadly across the fig genus (Ficus, Moraceae)

    Full text link
    • Premise of the study: We developed a set of microsatellite markers for broad utility across the species-rich pantropical tree genus Ficus (fig trees). The markers were developed to study population structure, hybridization, and gene flow in neotropical species. • Methods and Results: We developed seven novel primer sets from expressed sequence tag (EST) libraries of F. citrifolia and F. popenoei (subgen. Urostigma sect. Americana) and optimized five previously developed anonymous loci for cross-species amplification. The markers were successfully tested on four species from the basal subgenus Pharmacosycea sect. Pharmaco- sycea (F. insipida, F. maxima, F. tonduzii, and F. yoponensis) and seven species of the derived subgenus Urostigma (F. citrifolia, F. colubrinae, F. costaricana, F. nymphaeifolia, F. obtusifolia, F. pertusa, and F. popenoei). The 12 markers amplified consis- tently and displayed polymorphism in all the species. • Conclusions: This set of microsatellite markers is transferable across the phylogenetic breadth of Ficus, and should therefore be useful for studies of population structure and gene flow in approximately 750 fig species worldwide.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92471/1/Heer2012.pdf8

    All You Can Eat: High Performance Capacity and Plasticity in the Common Big-Eared Bat, Micronycteris microtis (Chiroptera: Phyllostomidae)

    Get PDF
    Ecological specialization and resource partitioning are expected to be particularly high in the species-rich communities of tropical vertebrates, yet many species have broader ecological niches than expected. In Neotropical ecosystems, Neotropical leaf-nosed bats (Phyllostomidae) are one of the most ecologically and functionally diverse vertebrate clades. Resource partitioning in phyllostomids might be achieved through differences in the ability to find and process food. We selected Micronycteris microtis, a very small (5–7 g) animalivorous phyllostomid, to explore whether broad resource use is associated with specific morphological, behavioral and performance traits within the phyllostomid radiation. We documented processing of natural prey and measured bite force in free-ranging M. microtis and other sympatric phyllostomids. We found that M. microtis had a remarkably broad diet for prey size and hardness. For the first time, we also report the consumption of vertebrates (lizards), which makes M. microtis the smallest carnivorous bat reported to date. Compared to other phyllostomids, M. microtis had the highest bite force for its size and cranial shape and high performance plasticity. Bite force and cranial shape appear to have evolved rapidly in the M. microtis lineage. High performance capacity and high efficiency in finding motionless prey might be key traits that allow M. microtis, and perhaps other species, to successfully co-exist with other gleaning bats

    Acoustic identification of Mexican bats based on taxonomic and ecological constraints on call design

    Get PDF
    1. Monitoring global biodiversity is critical for understanding responses to anthropogenic change, but biodiversity monitoring is often biased away from tropical, megadiverse areas that are experiencing more rapid environmental change. Acoustic surveys are increasingly used to monitor biodiversity change, especially for bats as they are important indicator species and most use sound to detect, localise and classify objects. However, using bat acoustic surveys for monitoring poses several challenges, particularly in mega-diverse regions. Many species lack reference recordings, some species have high call similarity or differ in call detectability, and quantitative classification tools, such as machine learning algorithms, have rarely been applied to data from these areas. 2. Here, we collate a reference call library for bat species that occur in a megadiverse country, Mexico. We use 4,685 search-phase calls from 1,378 individual sequences of 59 bat species to create automatic species identification tools generated by machine learning algorithms (Random Forest). We evaluate the improvement in species-level classification rates gained by using hierarchical classifications, reflecting either taxonomic or ecological constraints (guilds) on call design, and examine how classification rate accuracy changes at different hierarchical levels (family, genus, and guild). 3. Species-level classification of calls had a mean accuracy of 66% and the use of hierarchies improved mean species-level classification accuracy by up to 6% (species within families 72%, species within genera 71.2% and species within guilds 69.1%). Classification accuracy to family, genus and guild-level was 91.7%, 77.8% and 82.5%, respectively. 4. The bioacoustic identification tools we have developed are accurate for rapid biodiversity assessments in a megadiverse region and can also be used effectively to classify species at broader taxonomic or ecological levels. This flexibility increases their usefulness when there are incomplete species reference recordings and also offers the opportunity to characterise and track changes in bat community structure. Our results show that bat bioacoustic surveys in megadiverse countries have more potential than previously thought to monitor biodiversity changes and can be used to direct further developments of bioacoustic monitoring programs in Mexico

    Organising multi-dimensional biological image information: The BioImage Database

    Get PDF
    Nowadays it is possible to unravel complex information at all levels of cellular organization by obtaining multi-dimensional image information. at the macromolecular level, three-dimensional (3D) electron microscopy, together with other techniques, is able to reach resolutions at the nanometer or subnanometer level. The information is delivered in the form of 3D volumes containing samples of a given function, for example, the electron density distribution within a given macromolecule. The same situation happens at the cellular level with the new forms of light microscopy, particularly confocal microscopy, all of which produce biological 3D volume information. Furthermore, it is possible to record sequences of images over time (videos), as well as sequences of volumes, bringing key information on the dynamics of living biological systems. It is in this context that work on bioimage started two years ago, and that its first version is now presented here. In essence, Bioimage is a database specifically designed to contain multi-dimensional images, perform queries and interactively work with the resulting multi-dimensional information on the World Wide Web, as well as accomplish the required cross-database links. Two sister home pages of bioimage can be accessed at http://www.bioimage.org and http://www-embl.bioimage.or

    Variable strength of forest stand attributes and weather conditions on the questing activity of Ixodes ricinus ticks over years in managed forests

    Get PDF
    Given the ever-increasing human impact through land use and climate change on the environment, we crucially need to achieve a better understanding of those factors that influence the questing activity of ixodid ticks, a major disease-transmitting vector in temperate forests. We investigated variation in the relative questing nymph densities of Ixodes ricinus in differently managed forest types for three years (2008–2010) in SW Germany by drag sampling. We used a hierarchical Bayesian modeling approach to examine the relative effects of habitat and weather and to consider possible nested structures of habitat and climate forces. The questing activity of nymphs was considerably larger in young forest successional stages of thicket compared with pole wood and timber stages. Questing nymph density increased markedly with milder winter temperatures. Generally, the relative strength of the various environmental forces on questing nymph density differed across years. In particular, winter temperature had a negative effect on tick activity across sites in 2008 in contrast to the overall effect of temperature across years. Our results suggest that forest management practices have important impacts on questing nymph density. Variable weather conditions, however, might override the effects of forest management practices on the fluctuations and dynamics of tick populations and activity over years, in particular, the preceding winter temperatures. Therefore, robust predictions and the detection of possible interactions and nested structures of habitat and climate forces can only be quantified through the collection of long-term data. Such data are particularly important with regard to future scenarios of forest management and climate warming

    Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies

    Get PDF
    Background Mutations in the gene encoding thymidine kinase 2 (TK2) result in the myopathic form of mitochondrial DNA depletion syndrome which is a mitochondrial encephalomyopathy presenting in children. In order to unveil some of the mechanisms involved in this pathology and to identify potential biomarkers and therapeutic targets we have investigated the gene expression profile of human skeletal muscle deficient for TK2 using cDNA microarrays. Results We have analysed the whole transcriptome of skeletal muscle from patients with TK2 mutations and compared it to normal muscle and to muscle from patients with other mitochondrial myopathies. We have identified a set of over 700 genes which are differentially expressed in TK2 deficient muscle. Bioinformatics analysis reveals important changes in muscle metabolism, in particular, in glucose and glycogen utilisation, and activation of the starvation response which affects aminoacid and lipid metabolism. We have identified those transcriptional regulators which are likely to be responsible for the observed changes in gene expression. Conclusion Our data point towards the tumor suppressor p53 as the regulator at the centre of a network of genes which are responsible for a coordinated response to TK2 mutations which involves inflammation, activation of muscle cell death by apoptosis and induction of growth and differentiation factor 15 (GDF-15) in muscle and serum. We propose that GDF-15 may represent a potential novel biomarker for mitochondrial dysfunction although further studies are required

    Object-Oriented Echo Perception and Cortical Representation in Echolocating Bats

    Get PDF
    Echolocating bats can identify three-dimensional objects exclusively through the analysis of acoustic echoes of their ultrasonic emissions. However, objects of the same structure can differ in size, and the auditory system must achieve a size-invariant, normalized object representation for reliable object recognition. This study describes both the behavioral classification and the cortical neural representation of echoes of complex virtual objects that vary in object size. In a phantom-target playback experiment, it is shown that the bat Phyllostomus discolor spontaneously classifies most scaled versions of objects according to trained standards. This psychophysical performance is reflected in the electrophysiological responses of a population of cortical units that showed an object-size invariant response (14/109 units, 13%). These units respond preferentially to echoes from objects in which echo duration (encoding object depth) and echo amplitude (encoding object surface area) co-varies in a meaningful manner. These results indicate that at the level of the bat's auditory cortex, an object-oriented rather than a stimulus-parameter–oriented representation of echoes is achieved
    corecore