6 research outputs found

    Topological (Sliced) Doping of a 3D Peierls System: Predicted Structure of Doped BaBiO3

    Full text link
    At hole concentrations below x=0.4, Ba_(1-x)K_xBiO_3 is non-metallic. At x=0, pure BaBiO3 is a Peierls insulator. Very dilute holes create bipolaronic point defects in the Peierls order parameter. Here we find that the Rice-Sneddon version of Peierls theory predicts that more concentrated holes should form stacking faults (two-dimensional topological defects, called slices) in the Peierls order parameter. However, the long-range Coulomb interaction, left out of the Rice-Sneddon model, destabilizes slices in favor of point bipolarons at low concentrations, leaving a window near 30% doping where the sliced state is marginally stable.Comment: 6 pages with 5 embedded postscript figure

    Bulk and surface-sensitive high-resolution photoemission study of Mott-Hubbard systems SrVO3_3 and CaVO3_3

    Get PDF
    We study the electronic structure of Mott-Hubbard systems SrVO3_{3} and CaVO3_3 with bulk and surface-sensitive high-resolution photoemission spectroscopy (PES), using a VUV laser, synchrotron radiation and a discharge lamp (hνh\nu = 7 - 21 eV). A systematic suppression of the density of states (DOS) within \sim 0.2 eV of the Fermi level (EFE_F) is found on decreasing photon energy i.e. on increasing bulk sensitivity. The coherent band in SrVO3_{3} and CaVO3_3 is shown to consist of surface and bulk derived features, separated in energy. The stronger distortion on surface of CaVO3_{3} compared to SrVO3_{3} leads to higher surface metallicity in the coherent DOS at EFE_F, consistent with recent theory.Comment: 4 pages 5 figures (including 2 auxiliary figures); A complete analysis of the spectra based on the surface and bulk analysis shows in auxiliary figures Fig. A1 and A

    Electron-phonon coupling induced pseudogap and the superconducting transition in Ba0.67K0.33BiO3

    Full text link
    We study the single particle density of states (DOS) across the superconducting transition (Tc = 31 K) in single-crystal Ba0.67K0.33BiO3 using ultrahigh resolution angle-integrated photoemission spectroscopy. The superconducting gap opens with a pile-up in the DOS, Delta(5.3 K) = 5.2 meV and 2Delta(0)/kBTc = 3.9. In addition, we observe a pseudogap below and above Tc, occurring as a suppression in intensity over an energy scale up to the breathing mode phonon(~ 70 meV). The results indicate electron-phonon coupling induces a pseudogap in Ba0.67K0.33BiO3.Comment: 5 pages with 4 figures, submitted to Phys. Rev. Let
    corecore