11,330 research outputs found

    Is turbulent mixing a self convolution process ?

    Full text link
    Experimental results for the evolution of the probability distribution function (PDF) of a scalar mixed by a turbulence flow in a channel are presented. The sequence of PDF from an initial skewed distribution to a sharp Gaussian is found to be non universal. The route toward homogeneization depends on the ratio between the cross sections of the dye injector and the channel. In link with this observation, advantages, shortcomings and applicability of models for the PDF evolution based on a self-convolution mechanisms are discussed.Comment: 4 page

    Dynamics of the Lyman alpha and C IV emitting gas in 3C 273

    Full text link
    In this paper we study the variability properties of the Lyman alpha and C IV emission lines in 3C273 using archival IUE observations. Our data show for the first time the existence of variability on time scales of several years. We study the spatial distribution and the velocity field of the emitting gas by performing detailed analyses on the line variability using correlations, 1D and 2D response functions, and principal component analysis. In both lines we find evidence for two components, one which has the dynamic properties of gas in Keplerian motion around a black hole with a mass of the order of 10^9 Mo, and one which is characterized by high, blue-shifted velocities at large lag. There is no indication of the presence of optically thick emission medium neither in the Lya, nor in the Civ response functions. The component characterized by blue-shifted velocities, which is comparatively much stronger in Civ than in Lya, is more or less compatible with being the result of gas falling towards the central black hole with free-fall acceleration. We propose however that the line emission at high, blue-shifted velocities is better explained in terms of entrainment of gas clouds by the jet. This gas is therefore probably collisionally excited as a result of heating due to the intense infrared radiation from the jet, which would explain the strength of this component in Civ relative to Lya. This phenomenon might be a signature of disk-jet interaction.Comment: 16 pages, 10 figures. Accepted for publication in ApJ. Uses aaste

    Near-field interaction between domain walls in adjacent Permalloy nanowires

    Get PDF
    The magnetostatic interaction between two oppositely charged transverse domain walls (DWs)in adjacent Permalloy nanowires is experimentally demonstrated. The dependence of the pinning strength on wire separation is investigated for distances between 13 and 125 nm, and depinning fields up to 93 Oe are measured. The results can be described fully by considering the interaction between the full complex distribution of magnetic charge within rigid, isolated DWs. This suggests the DW internal structure is not appreciably disturbed by the pinning potential, and that they remain rigid although the pinning strength is significant. This work demonstrates the possibility of non-contact DW trapping without DW perturbation and full continuous flexibility of the pinning potential type and strength. The consequence of the interaction on DW based data storage schemes is evaluated.Comment: 4 pages, 4 figures, 1 page supplimentary material (supporting.ps

    Molecular Line Observations of Infrared Dark Clouds: Seeking the Precursors to Intermediate and Massive Star Formation

    Get PDF
    We have identified 41 infrared dark clouds from the 8 micron maps of the Midcourse Space Experiment (MSX), selected to be found within one square degree areas centered on known ultracompact HII regions. We have mapped these infrared dark clouds in N2H+(1-0), CS(2-1) and C18O(1-0) emission using the Five College Radio Astronomy Observatory. The maps of the different species often show striking differences in morphologies, indicating differences in evolutionary state and/or the presence of undetected, deeply embedded protostars. We derive an average mass for these clouds using N2H+ column densities of ~2500 solar masses, a value comparable to that found in previous studies of high mass star forming cores using other mass tracers. The linewidths of these clouds are typically ~2.0 - 2.9 km/s. Based on the fact that they are dark at 8 micron, compact, massive, and have large velocity dispersions, we suggest that these clouds may be the precursor sites of intermediate and high mass star formation.Comment: Accepted to ApJS, 22 pages, 10 pages of figures. For full-resolution images, see http://www.astro.lsa.umich.edu/~seragan/pubs/fcrao/figures.tar.g

    Modeling Variable Emission Lines in AGNs: Method and Application to NGC 5548

    Get PDF
    We present a new scheme for modeling the broad line region in active galactic nuclei (AGNs). It involves photoionization calculations of a large number of clouds, in several pre-determined geometries, and a comparison of the calculated line intensities with observed emission line light curves. Fitting several observed light curves simultaneously provides strong constraints on model parameters such as the run of density and column density across the nucleus, the shape of the ionizing continuum, and the radial distribution of the emission line clouds. When applying the model to the Seyfert 1 galaxy NGC 5548, we were able to reconstruct the light curves of four ultraviolet emission-lines, in time and in absolute flux. This has not been achieved by any previous work. We argue that the Balmer lines light curves, and possibly also the MgII2798 light curve, cannot be tested in this scheme because of the limitations of present-day photoionization codes. Our fit procedure can be used to rule out models where the particle density scales as r^{-2}, where r is the distance from the central source. The best models are those where the density scales as r^{-1} or r^{-1.5}. We can place a lower limit on the column density at a distance of 1 ld, of N_{col}(r=1) >~ 10^{23} cm^{-2} and limit the particle density to be in the range of 10^{12.5}>N(r=1)>10^{11} cm^{-3}. We have also tested the idea that the spectral energy distribution (SED) of the ionizing continuum is changing with continuum luminosity. None of the variable-shape SED tried resulted in real improvement over a constant SED case although models with harder continuum during phases of higher luminosity seem to fit better the observed spectrum. Reddening and/or different composition seem to play a minor role, at least to the extent tested in this work.Comment: 12 pages, including 9 embedded EPS figures, accepted for publication in Ap

    Detection of Coronal Mass Ejections in V471 Tauri with the Hubble Space Telescope

    Get PDF
    V471 Tauri, an eclipsing system consisting of a hot DA white dwarf (WD) and a dK2 companion in a 12.5-hour orbit, is the prototype of the pre-cataclysmic binaries. The late-type component is magnetically active, due to its being constrained to rotate synchronously with the short orbital period. During a program of UV spectroscopy of V471 Tau, carried out with the Goddard High Resolution Spectrograph (GHRS) onboard the Hubble Space Telescope, we serendipitously detected two episodes in which transient absorptions in the Si III 1206 A resonance line appeared suddenly, on a timescale of <2 min. The observations were taken in a narrow spectral region around Ly-alpha, and were all obtained near the two quadratures of the binary orbit, i.e., at maximum projected separation (~3.3 Rsun) of the WD and K star. We suggest that these transient features arise when coronal mass ejections (CME's) from the K2 dwarf pass across the line of sight to the WD. Estimates of the velocities, densities, and masses of the events in V471 Tau are generally consistent with the properties of solar CME's. Given our detection of 2 events during 6.8 hr of GHRS observing, along with a consideration of the restricted range of latitudes and longitudes on the K star's surface that can give rise to trajectories passing in front of the WD as seen from Earth, we estimate that the active V471 Tau dK star emits some 100-500 CME's per day, as compared to 1-3 per day for the Sun. The K dwarf's mass-loss rate associated with CME's is at least (5-25) x 10^{-14} Msun/yr, but it may well be orders of magnitude higher if most of the silicon is in ionization states other than Si III.Comment: 24 pages AASTeX, 4 figures. Accepted by Astrophysical Journa

    The SSS phase of RS Ophiuchi observed with Chandra and XMM-Newton I.: Data and preliminary Modeling

    Full text link
    The phase of Super-Soft-Source (SSS) emission of the sixth recorded outburst of the recurrent nova RS Oph was observed twice with Chandra and once with XMM-Newton. The observations were taken on days 39.7, 54.0, and 66.9 after outburst. We confirm a 35-sec period on day 54.0 and found that it originates from the SSS emission and not from the shock. We discus the bound-free absorption by neutral elements in the line of sight, resonance absorption lines plus self-absorbed emission line components, collisionally excited emission lines from the shock, He-like intersystem lines, and spectral changes during an episode of high-amplitude variability. We find a decrease of the oxygen K-shell absorption edge that can be explained by photoionization of oxygen. The absorption component has average velocities of -1286+-267 km/s on day 39.7 and of -771+-65 km/s on day 66.9. The wavelengths of the emission line components are consistent with their rest wavelengths as confirmed by measurements of non-self absorbed He-like intersystem lines. We have evidence that these lines originate from the shock rather than the outer layers of the outflow and may be photoexcited in addition to collisional excitations. We found collisionally excited emission lines that are fading at wavelengths shorter than 15A that originate from the radiatively cooling shock. On day 39.5 we find a systematic blue shift of -526+-114 km/s from these lines. We found anomalous He-like f/i ratios which indicates either high densities or significant UV radiation near the plasma where the emission lines are formed. During the phase of strong variability the spectral hardness light curve overlies the total light curve when shifted by 1000sec. This can be explained by photoionization of neutral oxygen in the line of sight if the densities of order 10^{10}-10^{11} cm^{-3}.Comment: 16 pages, 10 figures, 4 tables. Accepted by ApJ; v2: Co-author Woodward adde

    High-Resolution Keck Spectra of the Associated Absorption Lines in 3C 191

    Get PDF
    Associated absorption lines (AALs) are valuable probes of the gaseous environments near quasars. Here we discuss high-resolution (6.7 km/s) spectra of the AALs in the radio-loud quasar 3C 191 (redshift z=1.956). The measured AALs have ionizations ranging from Mg I to N V, and multi-component profiles that are blueshifted by ~400 to ~1400 km/s relative to the quasar's broad emission lines. These data yield the following new results. 1) The density based on Si II*/Si II lines is ~300 cm-3, implying a distance of ~28 kpc from the quasar if the gas is photoionized. 2) The characteristic flow time is thus \~3 x 10^7 yr. 3) Strong Mg I AALs identify neutral gas with very low ionization parameter and high density. We estimate n_H > 5 x 10^4 cm-3 in this region, compared to ~15 cm-3 where the N V lines form. 4) The total column density is N_H < 4 x 10^18 cm-2 in the neutral gas and N_H ~ 2 x 10^20 cm-2 in the moderately ionized regions. 5) The total mass in the AAL outflow is M ~ 2 x 10^9 Mo, assuming a global covering factor (as viewed from the quasar) of ~10% >. 6) The absorbing gas only partially covers the background light source(s) along our line(s) of sight, requiring absorption in small clouds or filaments <0.01 pc across. The ratio N_H/n_H implies that the clouds have radial (line- of-sight) thicknesses <0.2 pc. These properties might characterize a sub-class of AALs that are physically related to quasars but form at large distances. We propose a model for the absorber in which pockets of dense neutral gas are surrounded by larger clouds of generally lower density and higher ionization. This outflowing material might be leftover from a blowout associated with a nuclear starburst, the onset of quasar activity or a past broad absorption line (BAL) wind phase.Comment: 15 pages text plus 6 figures, in press with Ap

    Hubble Space Telescope Imaging of the Expanding Nebular Remnant of the Recurrent Nova RS Ophiuchi (2006)

    Full text link
    We report Hubble Space Telescope imaging obtained 155 days after the 2006 outburst of RS Ophiuchi. We detect extended emission in both [O III] and [Ne V] lines. In both lines, the remnant has a double ring structure. The E-W orientation and total extent of these structures (580+-50 AU at d=1.6kpc) is consistent with that expected due to expansion of emitting regions imaged earlier in the outburst at radio wavelengths. Expansion at high velocity appears to have been roughly constant in the E-W direction (v_{exp} = 3200+-300 km/s in the plane of the sky), with tentative evidence of deceleration N-S. We present a bipolar model of the remnant whose inclination is consistent with that of the central binary. The true expansion velocities of the polar components are then v = 5600+-1100 km/s. We suggest that the bipolar morphology of the remnant results from interaction of the outburst ejecta with a circumstellar medium that is significantly denser in the equatorial regions of the binary than at the poles. This is also consistent with observations of shock evolution in the X-ray and the possible presence of dust in the infrared. Furthermore, it is in line with models of the shaping of planetary nebulae with close binary central systems, and also with recent observations relating to the progenitors of Type Ia supernovae, for which recurrent novae are a proposed candidate. Our observations also reveal more extended structures to the S and E of the remnant whose possible origin is briefly discussed.Comment: 13 pages, 2 figures, accepted for publication in ApJ
    corecore