1,617 research outputs found

    Spin-enhanced magnetocaloric effect in molecular nanomagnets

    Get PDF
    An unusually large magnetocaloric effect for the temperature region below 10 K is found for the Fe-14 molecular nanomagnet. This is to large extent caused by its extremely large spin S ground state combined with an excess of entropy arising from the presence of low-lying excited S states. We also show that the highly symmetric Fe-14 cluster core, resulting in small cluster magnetic anisotropy, enables the occurrence of long-range antiferromagnetic order below T-N=1.87 K

    Inaccessible Singularities in Toral Cosmology

    Get PDF
    The familiar Bang/Crunch singularities of classical cosmology have recently been augmented by new varieties: rips, sudden singularities, and so on. These tend to be associated with final states. Here we consider an alternative possibility for the initial state: a singularity which has the novel property of being inaccessible to physically well-defined probes. These singularities arise naturally in cosmologies with toral spatial sections.Comment: 10 pages, version to appear in Classical and Quantum Gravit

    Low temperature magnetization and the excitation spectrum of antiferromagnetic Heisenberg spin rings

    Full text link
    Accurate results are obtained for the low temperature magnetization versus magnetic field of Heisenberg spin rings consisting of an even number N of intrinsic spins s = 1/2, 1, 3/2, 2, 5/2, 3, 7/2 with nearest-neighbor antiferromagnetic (AF) exchange by employing a numerically exact quantum Monte Carlo method. A straightforward analysis of this data, in particular the values of the level-crossing fields, provides accurate results for the lowest energy eigenvalue E(N,S,s) for each value of the total spin quantum number S. In particular, the results are substantially more accurate than those provided by the rotational band approximation. For s <= 5/2, data are presented for all even N <= 20, which are particularly relevant for experiments on finite magnetic rings. Furthermore, we find that for s > 1 the dependence of E(N,S,s) on s can be described by a scaling relation, and this relation is shown to hold well for ring sizes up to N = 80 for all intrinsic spins in the range 3/2 <= s <= 7/2. Considering ring sizes in the interval 8 <= N <= 50, we find that the energy gap between the ground state and the first excited state approaches zero proportional to 1/N^a, where a = 0.76 for s = 3/2 and a = 0.84 for s = 5/2. Finally, we demonstrate the usefulness of our present results for E(N,S,s) by examining the Fe12 ring-type magnetic molecule, leading to a new, more accurate estimate of the exchange constant for this system than has been obtained heretofore.Comment: Submitted to Physical Review B, 10 pages, 10 figure

    Realistic Earth escape strategies for solar sailing

    Get PDF
    With growing interest in solar sailing comes the requirement to provide a basis for future detailed planetary escape mission analysis by drawing together prior work, clarifying and explaining previously anomalies. Previously unexplained seasonal variations in sail escape times from Earth orbit are explained analytically and corroborated within a numerical trajectory model. Blended-sail control algorithms, explicitly independent of time, which providenear-optimal escape trajectories and maintain a safe minimum altitude and which are suitable as a potential autonomous onboard controller, are then presented. These algorithms are investigated from a range of initial conditions and are shown to maintain the optimality previously demonstrated by the use of a single-energy gain control law but without the risk of planetary collision. Finally, it is shown that the minimum sail characteristic acceleration required for escape from a polar orbit without traversing the Earth shadow cone increases exponentially as initial altitude is decreased

    Survey of highly non-Keplerian orbits with low-thrust propulsion

    Get PDF
    Celestial mechanics has traditionally been concerned with orbital motion under the action of a conservative gravitational potential. In particular, the inverse square gravitational force due to the potential of a uniform, spherical mass leads to a family of conic section orbits, as determined by Isaac Newton, who showed that Kepler‟s laws were derivable from his theory of gravitation. While orbital motion under the action of a conservative gravitational potential leads to an array of problems with often complex and interesting solutions, the addition of non-conservative forces offers new avenues of investigation. In particular, non-conservative forces lead to a rich diversity of problems associated with the existence, stability and control of families of highly non-Keplerian orbits generated by a gravitational potential and a non-conservative force. Highly non-Keplerian orbits can potentially have a broad range of practical applications across a number of different disciplines. This review aims to summarize the combined wealth of literature concerned with the dynamics, stability and control of highly non-Keplerian orbits for various low thrust propulsion devices, and to demonstrate some of these potential applications

    g-engineering in hybrid rotaxanes to create AB and AB2 electron spin systems: EPR spectroscopic studies of weak interactions between dissimilar electron spin qubits

    Get PDF
    Hybrid [2]rotaxanes and pseudorotaxanes are reported where the magnetic interaction between dissimilar spins is controlled to create AB and AB2 electron spin systems,allowing independent control of weakly interacting S =1=2 centers

    Time-delayed feedback control in astrodynamics

    Get PDF
    In this paper we present time-delayed feedback control (TDFC) for the purpose of autonomously driving trajectories of nonlinear systems into periodic orbits. As the generation of periodic orbits is a major component of many problems in astodynamics we propose this method as a useful tool in such applications. To motivate the use of this method we apply it to a number of well known problems in the astrodynamics literature. Firstly, TDFC is applied to control in the chaotic attitude motion of an asymmetric satellite in an elliptical orbit. Secondly, we apply TDFC to the problem of maintaining a spacecraft in a periodic orbit about a body with large ellipticity (such as an asteroid) and finally, we apply TDFC to eliminate the drift between two satellites in low Earth orbits to ensure their relative motion is bounded

    The Strong Energy Condition and the S-Brane Singularity Problem

    Full text link
    Recently it has been argued that, because tachyonic matter satisfies the Strong Energy Condition [SEC], there is little hope of avoiding the singularities which plague S-Brane spacetimes. Meanwhile, however, Townsend and Wohlfarth have suggested an ingenious way of circumventing the SEC in such situations, and other suggestions for actually violating it in the S-Brane context have recently been proposed. Of course, the natural context for discussions of [effective or actual] violations of the SEC is the theory of asymptotically deSitter spacetimes, which tend to be less singular than ordinary FRW spacetimes. However, while violating or circumventing the SEC is necessary if singularities are to be avoided, it is not at all clear that it is sufficient. That is, we can ask: would an asymptotically deSitter S-brane spacetime be non-singular? We show that this is difficult to achieve; this result is in the spirit of the recently proved "S-brane singularity theorem". Essentially our results suggest that circumventing or violating the SEC may not suffice to solve the S-Brane singularity problem, though we do propose two ways of avoiding this conclusion.Comment: 13 pages, minor corrections and improvements, references adde

    Effective growth of matter density fluctuations in the running LCDM and LXCDM models

    Full text link
    We investigate the matter density fluctuations \delta\rho/\rho for two dark energy (DE) models in the literature in which the cosmological term \Lambda is a running parameter. In the first model, the running LCDM model, matter and DE exchange energy, whereas in the second model, the LXCDM model, the total DE and matter components are conserved separately. The LXCDM model was proposed as an interesting solution to the cosmic coincidence problem. It includes an extra dynamical component, the "cosmon" X, which interacts with the running \Lambda, but not with matter. In our analysis we make use of the current value of the linear bias parameter, b^2(0)= P_{GG}/P_{MM}, where P_{MM} ~ (\delta\rho/\rho)^2 is the present matter power spectrum and P_{GG} is the galaxy fluctuation power spectrum. The former can be computed within a given model, and the latter is found from the observed LSS data (at small z) obtained by the 2dF galaxy redshift survey. It is found that b^2(0)=1 within a 10% accuracy for the standard LCDM model. Adopting this limit for any DE model and using a method based on the effective equation of state for the DE, we can set a limit on the growth of matter density perturbations for the running LCDM model, the solution of which is known. This provides a good test of the procedure, which we then apply to the LXCDM model in order to determine the physical region of parameter space, compatible with the LSS data. In this region, the LXCDM model is consistent with known observations and provides at the same time a viable solution to the cosmic coincidence problem.Comment: LaTeX, 38 pages, 8 figures. Version accepted in JCA

    Five-Spin Supramolecule for Simulating Quantum Decoherence of Bell States

    Get PDF
    We report a supramolecule that contains five spins of two different types and with, crucially, two different and predictable interaction energies between the spins. The supramolecule is characterized, and the interaction energies are demonstrated by electron paramagnetic resonance (EPR) spectroscopy. Based on the measured parameters, we propose experiments that would allow this designed supramolecule to be used to simulate quantum decoherence in maximally entangled Bell states that could be used in quantum teleportation
    • 

    corecore