2,524 research outputs found

    A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem

    Get PDF
    A quantum system will stay near its instantaneous ground state if the Hamiltonian that governs its evolution varies slowly enough. This quantum adiabatic behavior is the basis of a new class of algorithms for quantum computing. We test one such algorithm by applying it to randomly generated, hard, instances of an NP-complete problem. For the small examples that we can simulate, the quantum adiabatic algorithm works well, and provides evidence that quantum computers (if large ones can be built) may be able to outperform ordinary computers on hard sets of instances of NP-complete problems.Comment: 15 pages, 6 figures, email correspondence to [email protected] ; a shorter version of this article appeared in the April 20, 2001 issue of Science; see http://www.sciencemag.org/cgi/content/full/292/5516/47

    Using Classical Probability To Guarantee Properties of Infinite Quantum Sequences

    Full text link
    We consider the product of infinitely many copies of a spin-121\over 2 system. We construct projection operators on the corresponding nonseparable Hilbert space which measure whether the outcome of an infinite sequence of σx\sigma^x measurements has any specified property. In many cases, product states are eigenstates of the projections, and therefore the result of measuring the property is determined. Thus we obtain a nonprobabilistic quantum analogue to the law of large numbers, the randomness property, and all other familiar almost-sure theorems of classical probability.Comment: 7 pages in LaTe

    Derivation of the Quantum Probability Rule without the Frequency Operator

    Full text link
    We present an alternative frequencists' proof of the quantum probability rule which does not make use of the frequency operator, with expectation that this can circumvent the recent criticism against the previous proofs which use it. We also argue that avoiding the frequency operator is not only for technical merits for doing so but is closely related to what quantum mechanics is all about from the viewpoint of many-world interpretation.Comment: 12 page

    Improved Error-Scaling for Adiabatic Quantum State Transfer

    Full text link
    We present a technique that dramatically improves the accuracy of adiabatic state transfer for a broad class of realistic Hamiltonians. For some systems, the total error scaling can be quadratically reduced at a fixed maximum transfer rate. These improvements rely only on the judicious choice of the total evolution time. Our technique is error-robust, and hence applicable to existing experiments utilizing adiabatic passage. We give two examples as proofs-of-principle, showing quadratic error reductions for an adiabatic search algorithm and a tunable two-qubit quantum logic gate.Comment: 10 Pages, 4 figures. Comments are welcome. Version substantially revised to generalize results to cases where several derivatives of the Hamiltonian are zero on the boundar

    Exact solution for the dynamical decoupling of a qubit with telegraph noise

    Full text link
    We study the dissipative dynamics of a qubit that is afflicted by classical random telegraph noise and it is subject to dynamical decoupling. We derive exact formulas for the qubit dynamics at arbitrary working points in the limit of infinitely strong control pulses (bang-bang control) and we investigate in great detail the efficiency of the dynamical decoupling techniques both for Gaussian and non-Gaussian (slow) noise at qubit pure dephasing and at optimal point. We demonstrate that control sequences can be successfully implemented as diagnostic tools to infer spectral proprieties of a few fluctuators interacting with the qubit. The analysis is extended in order to include the effect of noise in the pulses and we give upper bounds on the noise levels that can be tolerated in the pulses while still achieving efficient dynamical decoupling performance
    corecore