1,357 research outputs found

    On the correction of anomalous phase oscillation in entanglement witnesses using quantum neural networks

    Full text link
    Entanglement of a quantum system depends upon relative phase in complicated ways, which no single measurement can reflect. Because of this, entanglement witnesses are necessarily limited in applicability and/or utility. We propose here a solution to the problem using quantum neural networks. A quantum system contains the information of its entanglement; thus, if we are clever, we can extract that information efficiently. As proof of concept, we show how this can be done for the case of pure states of a two-qubit system, using an entanglement indicator corrected for the anomalous phase oscillation. Both the entanglement indicator and the phase correction are calculated by the quantum system itself acting as a neural network

    A quantum neural network computes its own relative phase

    Full text link
    Complete characterization of the state of a quantum system made up of subsystems requires determination of relative phase, because of interference effects between the subsystems. For a system of qubits used as a quantum computer this is especially vital, because the entanglement, which is the basis for the quantum advantage in computing, depends intricately on phase. We present here a first step towards that determination, in which we use a two-qubit quantum system as a quantum neural network, which is trained to compute and output its own relative phase

    Quantum state transfer with untuneable couplings

    Full text link
    We present a general scheme for implementing bi-directional quantum state transfer in a quantum swapping channel. Unlike many other schemes for quantum computation and communication, our method does not require qubit couplings to be switched on and off. The only control variable is the bias acting on individual qubits. We show how to derive the parameters of the system (fixed and variable) such that perfect state transfer can be achieved. Since these parameters vary linearly with the pulse width, our scheme allows flexibility in the time scales under which qubits evolve. Unlike quantum spin networks, our scheme allows the transmission of several quantum states at a time, requiring only a two qubit separation between quantum states. By pulsing the biases of several qubits at the same time, we show that only eight bias control lines are required to achieve state transfer along a channel of arbitrary length. Furthermore, when the information to be transferred is purely classical in nature, only three bias control lines are required, greatly simplifying the circuit complexity
    corecore