42,516 research outputs found

    Magneto-optical conductivity in graphene including electron-phonon coupling

    Full text link
    We show how coupling to an Einstein phonon ωE\omega_E affects the absorption peaks seen in the optical conductivity of graphene under a magnetic field BB. The energies and widths of the various lines are shifted, and additional peaks arise in the spectrum. Some of these peaks are Holstein sidebands, resulting from the transfer of spectral weight in each Landau level (LL) into phonon-assisted peaks in the spectral function. Other additional absorption peaks result from transitions involving split LLs, which occur when a LL falls sufficiently close to a peak in the self-energy. We establish the selection rules for the additional transitions and characterize the additional absorption peaks. For finite chemical potential, spectral weight is asymmetrically distributed about the Dirac point; we discuss how this causes an asymmetry in the transitions due to left- and right-handed circularly polarized light and therefore oscillatory behavior in the imaginary part of the off-diagonal Hall conductivity. We also find that the semiclassical cyclotron resonance region is renormalized by an effective-mass factor but is not directly affected by the additional transitions. Last, we discuss how the additional transitions can manifest in broadened, rather than split, absorption peaks due to large scattering rates seen in experiment.Comment: 24 pages, 21 figure

    Phonon structures in the electronic density of states of graphene in magnetic field

    Full text link
    Unlike in ordinary metals, in graphene, phonon structure can be seen in the quasiparticle electronic density of states, because the latter varies on the scale of the phonon energy. In a magnetic field, quantization into Landau levels creates even more significant variations. We calculate the density of states incorporating electron-phonon coupling in this case and find that the coupling has pronounced new effects: shifting and broadening of Landau levels, creation of new peaks, and splitting of any Landau levels falling near one of the new peaks. Comparing our calculations with a recent experiment, we find evidence for a phonon with energy similar to but somewhat greater than the optical E2gE_{2g} mode and a coupling corresponding to a mass enhancement parameter λ≃0.07\lambda \simeq 0.07.Comment: 6 pages, 4 figures, final version to be published in EP

    An Improved Red Spectrum of the Methane or T-dwarf SDSS 1624+0029: Role of the Alkali Metals

    Get PDF
    A Keck~II low resolution spectrum shortward of ome-micron is presented for SDSS 1624+0029, the first field methane or T dwarf discovered in the Sloan Digital Sky Survey. Significant flux is detected down to the spectrum's short wavelength limit of 6200\AA. The spectrum exhibits a broad absorption feature centered at 7700\AA, which we interpret as the K~I 7665/7699 resonance doublet. The observed flux declines shortward of 7000\AA, due most likely to the red wing of the Na~I doublet. Both Cs~I doublet lines are detected more strongly than in an earlier red spectrum. Neither Li~I absorption nor Hα\alpha emission are detected. An exploratory model fit to the spectrum suggests that the shape of the red spectrum can be primarily accounted for by the broad wings of the K~I and Na~I doublets. This behavior is consistent with the argument proffered by Burrows, Marley and Sharp that strong alkali absorption is principally responsible for depressing T dwarf spectra shortward of 1μ\mum. In particular, there seems no compelling reason at this time to introduce dust or an additional opacity source in the atmosphere of the SDSS object. The width of the K~I and strengths of the Cs~I lines also indicate that the Sloan object is warmer than Gl~229B.Comment: accepted March 3, 2000 for Ap.J. Letters, LaTeX, 2 figure

    Testing for Photometric Variability at the L/T Boundary

    Get PDF
    We construct K_s-band light curves for nine field L and T brown dwarfs using the Palomar 60 inch Telescope. Results of a robust statistical analysis indicate that about half the targets show significant evidence for variability. Two of these variable targets have marginally significant peaks in the Lomb-Scargle periodogram. The phased light curves show evidence for periodic behavior on timescales of about 1.5 and 3.0 hours

    HACking at Non-linearity: Evidence from Stocks and Bonds

    Get PDF
    The implicit assumption of linearity is an important element in empirical finance. This study presents a hypothesis testing approach which examines the linear behaviour of the conditional mean between stock and bond returns. Conventional tests detect spurious non-linearity in the conditional mean caused by heteroskedasticity and/or autocorrelation. This study re-states these tests in a heteroskedasticity and autocorrelation consistent (HAC) framework and we find that stock and bond returns are indeed linear-in-the-mean in both univariate and bivariate settings. This study contends that previous research may have detected spurious non-linearity due to size distortions caused by heteroskedasticity and autocorrelation, rather than the presence of genuine non-linearity.linearity, nonlinear, heteroskedasticity-robust tests, autocorrelation-robust tests

    Agassiz, Garman, Albatross, and the Collection of Deep-sea Fishes

    Get PDF
    The first of Alexander Agassiz’ voyages on the U.S. Fish Commission steamer Albatross in 1891 yielded significant scientific results. This paper reviews the background of the voyage, including the career path that led Agassiz to the back deck of the Albatross. We also give a brief account of the life and work of Samuel Garman. Garman wrote up the ichthyological material from this Albatross voyage in a magnificent book on deep-sea fishes published in 1899. This book was exceptional in its coverage, anatomical detail, and recognition of phylogenetically important morphology

    The group structure of non-Abelian NS-NS transformations

    Full text link
    We study the transformations of the worldvolume fields of a system of multiple coinciding D-branes under gauge transformations of the supergravity Kalb-Ramond field. We find that the pure gauge part of these NS-NS transformations can be written as a U(N) symmetry of the underlying Yang-Mills group, but that in general the full NS-NS variations get mixed up non-trivially with the U(N). We compute the commutation relations and the Jacobi identities of the bigger group formed by the NS-NS and U(N) transformations.Comment: Latex, 11 pages. v2: Typos corrected; version to appear in JHEP
    • …
    corecore