9,173 research outputs found
How the orbital period of a test particle is modified by the Dvali-Gabadadze-Porrati gravity?
In addition to the pericentre \omega, the mean anomaly M and, thus, the mean
longitude \lambda, also the orbital period Pb and the mean motion of a test
particle are modified by the Dvali-Gabadadze-Porrati gravity. While the
correction to Pb depends on the mass of the central body and on the geometrical
features of the orbital motion around it, the correction to is independent
of them, up to terms of second order in the eccentricity . The latter one
amounts to about 2\times 10^-3 arcseconds per century. The present-day accuracy
in determining the mean motions of the inner planets of the Solar System from
radar ranging and differential Very Long Baseline Interferometry is
10^-2-5\times 10^-3 arcseconds per century, but it should be improved in the
near future when the data from the spacecraft to Mercury and Venus will be
available.Comment: LaTex, 7 pages, 13 references, no tables, no figures. Section 2.3
added. To appear in JCA
Secular increase of the Astronomical Unit and perihelion precessions as tests of the Dvali-Gabadadze-Porrati multi-dimensional braneworld scenario
An unexpected secular increase of the Astronomical Unit, the length scale of
the Solar System, has recently been reported by three different research groups
(Krasinsky and Brumberg, Pitjeva, Standish). The latest JPL measurements amount
to 7+-2 m cy^-1. At present, there are no explanations able to accommodate such
an observed phenomenon, neither in the realm of classical physics nor in the
usual four-dimensional framework of the Einsteinian General Relativity. The
Dvali-Gabadadze-Porrati braneworld scenario, which is a multi-dimensional model
of gravity aimed to the explanation of the observed cosmic acceleration without
dark energy, predicts, among other things, a perihelion secular shift, due to
Lue and Starkman, of 5 10^-4 arcsec cy^-1 for all the planets of the Solar
System. It yields a variation of about 6 m cy^-1 for the Earth-Sun distance
which is compatible at 1-sigma level with the observed rate of the Astronomical
Unit. The recently measured corrections to the secular motions of the perihelia
of the inner planets of the Solar System are in agreement, at 1-sigma level,
with the predicted value of the Lue-Starkman effect for Mercury and Mars and at
2-sigma level for the Earth.Comment: LaTex2e, 7 pages, no figures, no tables, 13 references. Minor
correction
Solar System planetary orbital motions and dark matter
In this paper we explicitly work out the effects that a spherically symmetric
distribution of dark matter with constant density would induce on the Keplerian
orbital elements of the Solar System planets and compare them with the latest
results in planetary orbit determination from the EPM2004 ephemerides. It turns
out that the longitudes of perihelia and the mean longitudes are affected by
secular precessions. The resulting upper bounds on dark matter density,
obtained from the EPM2004 formal errors in the determined mean longitude shifts
over 90 years, lie in the range 10^-19-10^-20 g cm^-3 with a peak of 10^-22 g
cm^-3 for Mars. Suitable combinations of the planetary mean longitudes and
perihelia, which cancel out the aliasing impact of some of the unmodelled or
mismodelled forces of the dynamical models of EPM2004, yield a global upper
bound of 7 10^-20 g cm^-3 and 4 10^-19 g cm^-3, respectively.Comment: Latex, 8 pages, 2 tables, no figures, 8 references. Revised version
with improved analysi
Lower bounds of characteristic scale of topological modification of the Newtonian gravitation
We analytically work out the long-term orbital perturbations induced by the
first term of the expansion of the perturbing potential arising from the local
modification of the Newton's inverse square law due to a topology R^2 x S^1
with a compactified dimension of radius R recently proposed by Floratos and
Leontaris. We neither restrict to any specific spatial direction for the
asymmetry axis nor to particular orbital configurations of the test particle.
Thus, our results are quite general. Non-vanishing long-term variations occur
for all the usual osculating Keplerian orbital elements, apart from the
semimajor axis which is left unaffected. By using recent improvements in the
determination of the orbital motion of Saturn from Cassini data, we
preliminarily inferred R >= 4-6 kau. As a complementary approach, the putative
topological effects should be explicitly modeled and solved-for with a modified
version of the ephemerides dynamical models with which the same data sets
should be reprocessed.Comment: Latex, 6 pages, no tables, 1 figure, 3 references. Accepted for
publication in International Journal of Modern Physics D (IJMPD
On the perspectives of testing the Dvali-Gabadadze-Porrati gravity model with the outer planets of the Solar System
The multidimensional braneworld gravity model by Dvali, Gabadadze and Porrati
was primarily put forth to explain the observed acceleration of the expansion
of the Universe without resorting to dark energy. One of the most intriguing
features of such a model is that it also predicts small effects on the orbital
motion of test particles which could be tested in such a way that local
measurements at Solar System scales would allow to get information on the
global properties of the Universe. Lue and Starkman derived a secular
extra-perihelion \omega precession of 5\times 10^-4 arcseconds per century,
while Iorio showed that the mean longitude \lambda is affected by a secular
precession of about 10^-3 arcseconds per century. Such effects depend only on
the eccentricities e of the orbits via second-order terms: they are, instead,
independent of their semimajor axes a. Up to now, the observational efforts
focused on the dynamics of the inner planets of the Solar System whose orbits
are the best known via radar ranging. Since the competing Newtonian and
Einsteinian effects like the precessions due to the solar quadrupole mass
moment J2, the gravitoelectric and gravitomagnetic part of the equations of
motion reduce with increasing distances, it would be possible to argue that an
analysis of the orbital dynamics of the outer planets of the Solar System, with
particular emphasis on Saturn because of the ongoing Cassini mission with its
precision ranging instrumentation, could be helpful in evidencing the predicted
new features of motion. In this note we investigate this possibility in view of
the latest results in the planetary ephemeris field. Unfortunately, the current
level of accuracy rules out this appealing possibility and it appears unlikely
that Cassini and GAIA will ameliorate the situation.Comment: LaTex, 22 pages, 2 tables, 10 figures, 27 references. Reference [17]
added, reference [26] updated, caption of figures changed, small change in
section 1.
On a new observable for measuring the Lense-Thirring effect with Satellite Laser Ranging
In this paper we present a rather extensive error budget for the difference
of the perigees of a pair of supplementary SLR satellites aimed to the
detection of the Lense-Thirring effect.Comment: LaTex2e, 14 pages, 1 table, no figures. Some changes and additions to
the abstract, Introduction and Conclusions. References updated, typos
corrected. Equation corrected. To appear in General Relativity and
Gravitatio
The impact of the new CHAMP and GRACE Earth gravity models on the measurement of the general relativistic Lense--Thirring effect with the LAGEOS and LAGEOS II satellites
Among the effects predicted by the General Theory of Relativity for the
orbital motion of a test particle, the post-Newtonian gravitomagnetic
Lense-Thirring effect is very interesting and, up to now, there is not yet an
undisputable experimental direct test of it. To date, the data analysis of the
orbits of the existing geodetic LAGEOS and LAGEOS II satellites has yielded a
test of the Lense-Thirring effect with a claimed accuracy of 20%-30%. According
to some scientists such estimates could be optimistic. Here we wish to discuss
the improvements obtainable in this measurement, in terms of reliability of the
evaluation of the systematic error and reduction of its magnitude, due to the
new CHAMP and GRACE Earth gravity models.Comment: LaTex2e, 6 pages, no figures, no tables. Paper presented at 2nd CHAMP
science meeting, Potsdam, 1-4 September 200
The relativistic precession of the orbits
The relativistic precession can be quickly inferred from the nonlinear polar
orbit equation without actually solving it.Comment: Accepted for publication in Astrophysics & Space Scienc
- …