9 research outputs found

    Unregulated Custody Transfers: Why the Practice of Rehoming Should Be Considered a Form of Illegal Adoption and Human Trafficking

    Get PDF
    In this work, the authors prepared and characterized two different graphene oxides: one chemically synthesized (GO sample) and the other one electrochemically synthesized (GO(LiCl)). Both samples were fully characterized with atomic force microscopy (AFM), Raman and Fourier transform infrared (FTIR) spectroscopies, X-ray photo electron spectroscopy (XPS), thermal analysis (TG/DTA), and Z-potential. The antibacterial properties of both graphene oxides were studied using Gram-negative Escherichia coli ATCC 25922 and Gram-positive Staphylococcus aureus ATCC 25923 by spectrophotometer and viable cell count as indirect and direct methods, respectively. Results demonstrated that the GO(LiCl) exhibited a significant antibacterial activity compared to GO that showed a bacteriostatic effect on both pathogens. Electron microscopy analysis confirmed the antibacterial effects of both graphene oxides toward the pathogens, especially working at 80 μg/mL, for 24 h. Additional studies were also performed and both GO samples were not cytotoxic at 2 μg/mL toward neuroblastoma cells. Moreover, 2 μg of GO was suitable to carry the minimum effective dose (5.74 ng/mL) of kinase inhibitor S29 (1-(2-chloro-2-(4-chlorophenyl)ethyl)-N-(4-fluorobenzyl)-1H-pyrazolo[3,4-d] pyrimidin-4-amine), providing negligible side effects related to the S29 treatment (this latter being specifically active on the neuroblastoma cell lines (SK-N-BE(2)))

    Antibodies to adhesion molecules inhibit the lytic function of MHC-unrestricted cytotoxic cells by preventing their activation.

    No full text
    We evaluated the effect of the antibodies to adhesion molecules CD2, CD11a/CD18 (LFA-1), and CD56 (N-CAM) on MHC-unrestricted cytotoxicity mediated by polyclonal NK cells and LAK cells or by CD3+ or CD3- cytolytic cell clones against a panel of tumor cell targets selected according to expression or absence of the corresponding ligands. We show that (i) antibodies to CD11a/CD18 and, to a lesser extent, antibodies to CD2 inhibit target cell lysis, whereas anti-CD56 antibodies exert little if any effect; (ii) in a model system using polyclonal NK/LAK cells as effectors and K562 or HL60-R (NK-resistant) cells as targets, inhibition of cytotoxicity occurs without a significant impairment of effector to target cell binding; (iii) the cytotoxic function of CD3+ or CD3- cytotoxic cell clones is inhibited differentially by antibodies to adhesion molecules; (iv) conjugates formed in the presence of antibodies which inhibit target cell lysis display a significant reduction of target to effector cell contact surface; and (v) this may lead to defective activation of effector cells, as indicated by lack of redistribution of the microtubular apparatus. We conclude that (i) MHC-unrestricted cytotoxicity is regulated by a number of molecular interactions that span far beyond our present knowledge and that it is strictly dependent on the surface phenotype of the effector cell and of the target cell; (ii) in certain types of effector/target cell interactions, antibodies to adhesion molecules do not prevent conjugate formation but reduce the extent of cell-to-cell surface contact which, in turn, leads to defective activation of the effector cell and, therefore, to inhibition of target cell lysis

    Electrogenic and hydrocarbonoclastic biofilm at the oil-water interface as microbial responses to oil spill

    No full text
    The oil-water interface formed during an oil spill represents a challenging environment for pelagic communities living in aquatic ecosystems. At this anoxic barrier, we report the formation of a microbial hydrocarbonoclastic biofilm capable of electron transfer along the water column. This biofilm generated a membrane of surface-active compounds that allowed the spontaneous separation of electrical charges, causing the establishment of an anodic and a cathodic region and, as a result, the spontaneous creation of a liquid microbial fuel cell. Such floating biofilm was connected to the water column underneath by floating filaments that could contribute to oxygen reduction at distance. The filaments revealed an unusual lipid content induced by anoxic conditions, with prominent ultrastructural features similar to myelin found in oligodendrocytes of the vertebrate nervous system. Furthermore, these filaments showed an interesting cross-reactivity towards different epitopes of the myelin basic protein (MBP) and Claudin 11 (O4) of human oligodendrocytes. The presence of a network of filaments similar to myelin suggests the probable existence of evolutionary connections between very distant organisms. Collectively these results suggest a possible mechanism for how lake microbial communities can adapt to oil spills while offering an interesting starting point for technological developments of liquid microbial fuel cells related to the study of hydrocarbon-water interfaces. The data that support the findings of this study are openly available in figshare at https://figshare.com/s/72bc73ae14011dc7920d

    The fatty acid and protein profiles of circulating CD81-positive small extracellular vesicles are associated with disease stage in melanoma patients

    No full text
    The early detection of cutaneous melanoma, a potentially lethal cancer with rising inci-dence, is fundamental to increasing survival and therapeutic adjustment. In stages II–IV especially, additional indications for adjuvant therapy purposes after resection and for treatment of metastatic patients are urgently needed. We investigated whether the fatty acid (FA) and protein compositions of small extracellular vesicles (sEV) derived from the plasma of stage 0–I, II and III–IV melanoma patients (n = 38) could reflect disease stage. The subpopulation of sEV expressing CD81 EV marker (CD81sEV) was captured by an ad hoc immune affinity technique from plasma depleted of large EV. Biological macromolecules were investigated by gas chromatography and mass spectrometry in CD81sEV. A higher content of FA was detectable in patients with respect to healthy donors (HD). Moreover, a higher C18:0/C18:1 ratio, as a marker of cell membrane fluidity, distinguished early (stage 0–I) from late (III–IV) stages’ CD81sEV. Proteomics detected increases in CD14, PON1, PON3 and APOA5 exclusively in stage II CD81sEV, and RAP1B was decreased in stage III–IV CD81sEV, in comparison to HD. Our results suggest that stage dependent alterations in CD81sEV’ FA and protein composition may occur early after disease onset, strengthening the potential of circulating sEV as a source of discriminatory information for early diagnosis, prediction of metastatic behavior and following up of melanoma patients
    corecore