1,229 research outputs found

    The Evolution of the Stellar Hosts of Radio Galaxies

    Full text link
    We present new near-infrared images of z>0.8 radio galaxies from the flux-limited 7C-III sample of radio sources for which we have recently obtained almost complete spectroscopic redshifts. The 7C objects have radio luminosities about 20 times fainter than 3C radio galaxies at a given redshift. The absolute magnitudes of the underlying host galaxies and their scale sizes are only weakly dependent on radio luminosity. Radio galaxy hosts at z~2 are significantly brighter than the hosts of radio-quiet quasars at similar redshifts and the model AGN hosts of Kauffmann & Haehnelt (2000). There is no evidence for strong evolution in scale size, which shows a large scatter at all redshifts. The hosts brighten significantly with redshift, consistent with the passive evolution of a stellar population that formed at z>~3. This scenario is consistent with studies of host galaxy morphology and submillimeter continuum emission, both of which show strong evolution at z>~2.5. The lack of a strong ``redshift cutoff'' in the radio luminosity function to z>4 suggests that the formation epoch of the radio galaxy host population lasts >~1Gyr from z>~5 to z~3. We suggest these facts are best explained by models in which the most massive galaxies and their associated AGN form early due to high baryon densities in the centres of their dark matter haloes.Comment: To appear in A

    Silicon isotopic abundance toward evolved stars and its application for presolar grains

    Get PDF
    Galactic chemical evolution (GCE) is important for understanding the composition of the present-day interstellar medium (ISM) and of our solar system. In this paper, we aim to track the GCE by using the 29Si/30Si ratios in evolved stars and tentatively relate this to presolar grain composition. We used the APEX telescope to detect thermal SiO isotopologue emission toward four oxygen-rich M-type stars. Together with the data retrieved from the Herschel science archive and from the literature, we were able to obtain the 29Si/30Si ratios for a total of 15 evolved stars inferred from their optically thin 29SiO and 30SiO emission. These stars cover a range of masses and ages, and because they do not significantly alter 29Si/30Si during their lifetimes, they provide excellent probes of the ISM metallicity (or 29Si/30Si ratio) as a function of time. The 29Si/30Si ratios inferred from the thermal SiO emission tend to be lower toward low-mass oxygen-rich stars (e.g., down to about unity for W Hya), and close to an interstellar or solar value of 1.5 for the higher-mass carbon star IRC+10216 and two red supergiants. There is a tentative correlation between the 29Si/30Si ratios and the mass-loss rates of evolved stars, where we take the mass-loss rate as a proxy for the initial stellar mass or current stellar age. This is consistent with the different abundance ratios found in presolar grains. We found that older objects (up to possibly 10 Gyr old) in our sample trace a previous, lower 29Si/30Si value of about 1. Material with this isotopic ratio is present in two subclasses of presolar grains, providing independent evidence of the lower ratio. Therefore, the 29Si/30Si ratio derived from the SiO emission of evolved stars is a useful diagnostic tool for the study of the GCE and presolar grains.Comment: 7 pages, 4 figure

    Expression of soluble, active fragments of the morphogenetic protein SpoIIE from Bacillus subtilis using a library-based construct screen

    Get PDF
    SpoIIE is a dual function protein that plays important roles during sporulation in Bacillus subtilis. It binds to the tubulin-like protein FtsZ causing the cell division septum to relocate from mid-cell to the cell pole, and it dephosphorylates SpoIIAA phosphate leading to establishment of differential gene expression in the two compartments following the asymmetric septation. Its 872 residue polypeptide contains a multiple-membrane spanning sequence at the N-terminus and a PP2C phosphatase domain at the C-terminus. The central segment that binds to FtsZ is unlike domains of known structure or function, moreover the domain boundaries are poorly defined and this has hampered the expression of soluble fragments of SpoIIE at the levels required for structural studies. Here we have screened over 9000 genetic constructs of spoIIE using a random incremental truncation library approach, ESPRIT, to identify a number of soluble C-terminal fragments of SpoIIE that were aligned with the protein sequence to map putative domains and domain boundaries. The expression and purification of three fragments were optimised, yielding multimilligram quantities of the PP2C phosphatase domain, the putative FtsZ-binding domain and a larger fragment encompassing both these domains. All three fragments are monomeric and the PP2C domain-containing fragments have phosphatase activity

    MESMER: MeerKAT Search for Molecules in the Epoch of Reionization

    Full text link
    [Abridged] Observations of molecular gas at all redshifts are critical for measuring the cosmic evolution in molecular gas density and understanding the star-formation history of the Universe. The 12CO molecule (J=1-0 transition = 115.27 GHz) is the best proxy for extragalactic H2, which is the gas reservoir from which star formation occurs, and has been detected out to z~6. Typically, redshifted high-J lines are observed at mm-wavelengths, the most commonly targeted systems exhibiting high SFRs (e.g. submm galaxies), and far-IR-bright QSOs. While the most luminous objects are the most readily observed, detections of more typical galaxies with modest SFRs are essential for completing the picture. ALMA will be revolutionary in terms of increasing the detection rate and pushing the sensitivity limit down to include such galaxies, however the limited FoV when observing at such high frequencies makes it difficult to use ALMA for studies of the large-scale structure traced out by molecular gas in galaxies. This article introduces a strategy for a systematic search for molecular gas during the EoR (z~7 and above), capitalizing on the fact that the J=1-0 transition of 12CO enters the upper bands of cm-wave instruments at high-z. The FoV advantage gained by observing at such frequencies, coupled with modern broadband correlators allows significant cosmological volumes to be probed on reasonable timescales. In this article we present an overview of our future observing programme which has been awarded 6,500 hours as one of the Large Survey Projects for MeerKAT, the forthcoming South African SKA pathfinder instrument. Its large FoV and correlator bandwidth, and high-sensitivity provide unprecedented survey speed for such work. An existing astrophysical simulation is coupled with instrumental considerations to demonstrate the feasibility of such observations and predict detection rates.Comment: 7 pages, 4 figures, to appear in the proceedings of "Astronomy with megastructures: Joint science with the E-ELT and SKA", 10-14 May 2010, Crete, Greece (Eds: Isobel Hook, Dimitra Rigopoulou, Steve Rawlings and Aris Karastergiou

    Modeling of Protostellar Clouds and their Observational Properties

    Full text link
    A physical model and two-dimensional numerical method for computing the evolution and spectra of protostellar clouds are described. The physical model is based on a system of magneto-gasdynamical equations, including ohmic and ambipolar diffusion, and a scheme for calculating the thermal and ionization structure of a cloud. The dust and gas temperatures are determined during the calculations of the thermal structure of the cloud. The results of computing the dynamical and thermal structure of the cloud are used to model the radiative transfer in continuum and in molecular lines. We presented the results for clouds in hydrostatic and thermal equilibrium. The evolution of a rotating magnetic protostellar cloud starting from a quasi-static state is also considered. Spectral maps for optically thick lines of linear molecules are analyzed. We have shown that the influence of the magnetic field and rotation can lead to a redistribution of angular momentum in the cloud and the formation of a characteristic rotational velocity structure. As a result, the distribution of the velocity centroid of the molecular lines can acquire an hourglass shape. We plan to use the developed program package together with a model for the chemical evolution to interpret and model observed starless and protostellar cores.Comment: Accepted to Astronomy Report

    The Updated Zwicky Catalog (UZC)

    Get PDF
    The Zwicky Catalog of galaxies (ZC), with m_Zw<=15.5mag, has been the basis for the Center for Astrophysics (CfA) redshift surveys. To date, analyses of the ZC and redshift surveys based on it have relied on heterogeneous sets of galaxy coordinates and redshifts. Here we correct some of the inadequacies of previous catalogs by providing: (1) coordinates with <~2 arcsec errors for all of the Nuzc catalog galaxies, (2) homogeneously estimated redshifts for the majority (98%) of the data taken at the CfA (14,632 spectra), and (3) an estimate of the remaining "blunder" rate for both the CfA redshifts and for those compiled from the literature. For the reanalyzed CfA data we include a calibrated, uniformly determined error and an indication of the presence of emission lines in each spectrum. We provide redshifts for 7,257 galaxies in the CfA2 redshift survey not previously published; for another 5,625 CfA redshifts we list the remeasured or uniformly re-reduced value. Among our new measurements, Nmul are members of UZC "multiplets" associated with the original Zwicky catalog position in the coordinate range where the catalog is 98% complete. These multiplets provide new candidates for examination of tidal interactions among galaxies. All of the new redshifts correspond to UZC galaxies with properties recorded in the CfA redshift compilation known as ZCAT. About 1,000 of our new measurements were motivated either by inadequate signal-to-noise in the original spectrum or by an ambiguous identification of the galaxy associated with a ZCAT redshift. The redshift catalog we include here is ~96% complete to m_Zw<=15.5, and ~98% complete (12,925 galaxies out of a total of 13,150) for the RA(1950) ranges [20h--4h] and [8h--17h] and DEC(1950) range [-2.5d--50d]. (abridged)Comment: 34 pp, 7 figs, PASP 1999, 111, 43

    A miniaturized 4 K platform for superconducting infrared photon counting detectors

    Get PDF
    We report on a miniaturized platform for superconducting infrared photon counting detectors. We have implemented a fibre-coupled superconducting nanowire single photon detector in a Stirling/Joule–Thomson platform with a base temperature of 4.2 K. We have verified a cooling power of 4 mW at 4.7 K. We report 20% system detection efficiency at 1310 nm wavelength at a dark count rate of 1 kHz. We have carried out compelling application demonstrations in single photon depth metrology and singlet oxygen luminescence detection

    HST NIR Snapshot Survey of 3CR Radio Source Counterparts II: An Atlas and Inventory of the Host Galaxies, Mergers and Companions

    Get PDF
    We present the second part of an H-band (1.6 microns) atlas of z<0.3 3CR radio galaxies, using the Hubble Space Telescope Near Infrared Camera and Multi-Object Spectrometer (HST NICMOS2). We present new imaging for 21 recently acquired sources, and host galaxy modeling for the full sample of 101 (including 11 archival) -- an 87% completion rate. Two different modeling techniques are applied, following those adopted by the galaxy morphology and the quasar host galaxy communities. Results are compared, and found to be in excellent agreement, although the former breaks down in the case of strongly nucleated sources. Companion sources are tabulated, and the presence of mergers, tidal features, dust disks and jets are catalogued. The tables form a catalogue for those interested in the structural and morphological dust-free host galaxy properties of the 3CR sample, and for comparison with morphological studies of quiescent galaxies and quasar host galaxies. Host galaxy masses are estimated, and found to typically lie at around 2*10^11 solar masses. In general, the population is found to be consistent with the local population of quiescent elliptical galaxies, but with a longer tail to low Sersic index, mainly consisting of low-redshift (z<0.1) and low-radio-power (FR I) sources. A few unusually disky FR II host galaxies are picked out for further discussion. Nearby external sources are identified in the majority of our images, many of which we argue are likely to be companion galaxies or merger remnants. The reduced NICMOS data are now publicly available from our website (http://archive.stsci.edu/prepds/3cr/)Comment: ApJS, 177, 148: Final version; includes revised figures 1, 15b, and section 7.5 (and other minor changes from editing process. 65 pages, inc. 17 figure

    Development of a T cell-based immunodiagnostic system to effectively distinguish SARS-CoV-2 infection and COVID-19 vaccination status

    Get PDF
    Both SARS-CoV-2 infections and COVID-19 vaccines elicit memory T cell responses. Here, we report the development of 2 pools of experimentally defined SARS-CoV-2 T cell epitopes that, in combination with spike, were used to discriminate 4 groups of subjects with different SARS-CoV-2 infection and COVID-19 vaccine status. The overall T cell-based classification accuracy was 89.2% and 88.5% in the experimental and validation cohorts. This scheme was applicable to different mRNA vaccines and different lengths of time post infection/post vaccination and yielded increased accuracy when compared to serological readouts. T cell responses from breakthrough infections were also studied and effectively segregated from vaccine responses, with a combined performance of 86.6% across all 239 subjects from the 5 groups. We anticipate that a T cell-based immunodiagnostic scheme to classify subjects based on their vaccination and natural infection history will be an important tool for longitudinal monitoring of vaccinations and for establishing SARS-CoV-2 correlates of protection

    Radio Loud and Radio Quiet Active Galactic Nuclei

    Get PDF
    We generated a sample of 409 AGNs for which both the radio luminosity at 5 GHz and the line luminosity in [OIII] 5007 have been measured. The radio luminosity spans a range of ten orders of magnitude, and the [OIII] line luminosity spans a range of eight orders of magnitude --- both considerably larger than the ranges in previous studies. We show that these two quantities are correlated in a similar way for both radio-loud and radio-quiet AGNs. We demonstrate that the observed correlation can be explained in terms of a model in which jets are accelerated and collimated by a vertical magnetic field.Comment: 45 pages inc. 7 figures, 1 table of 15 pages in ps-format. Accept to AJ September 199
    • …
    corecore