27 research outputs found

    Control of the geometric phase and pseudo-spin dynamics on coupled Bose-Einstein condensates

    Full text link
    We describe the behavior of two coupled Bose-Einstein condensates in time-dependent (TD) trap potentials and TD Rabi (or tunneling) frequency, using the two-mode approach. Starting from Bloch states, we succeed to get analytical solutions for the TD Schroedinger equation and present a detailed analysis of the relative and geometric phases acquired by the wave function of the condensates, as well as their population imbalance. We also establish a connection between the geometric phases and constants of motion which characterize the dynamic of the system. Besides analyzing the affects of temporality on condensates that differs by hyperfine degrees of freedom (internal Josephson effect), we also do present a brief discussion of a one specie condensate in a double-well potential (external Josephson effect).Comment: 1 tex file and 11 figures in pdf forma

    A general treatment of geometric phases and dynamical invariants

    Full text link
    Based only on the parallel transport condition, we present a general method to compute Abelian or non-Abelian geometric phases acquired by the basis states of pure or mixed density operators, which also holds for nonadiabatic and noncyclic evolution. Two interesting features of the non-Abelian geometric phase obtained by our method stand out: i) it is a generalization of Wilczek and Zee's non-Abelian holonomy, in that it describes nonadiabatic evolution where the basis states are parallelly transported between distinct degenerate subspaces, and ii) the non-Abelian character of our geometric phase relies on the transitional evolution of the basis states, even in the nondegenerate case. We apply our formalism to a two-level system evolving nonadiabatically under spontaneous decay to emphasize the non-Abelian nature of the geometric phase induced by the reservoir. We also show, through the generalized invariant theory, that our general approach encompasses previous results in the literature

    Dynamical invariants and nonadiabatic geometric phases in open quantum systems

    Full text link
    We introduce an operational framework to analyze non-adiabatic Abelian and non-Abelian, cyclic and non-cyclic, geometric phases in open quantum systems. In order to remove the adiabaticity condition, we generalize the theory of dynamical invariants to the context of open systems evolving under arbitrary convolutionless master equations. Geometric phases are then defined through the Jordan canonical form of the dynamical invariant associated with the super-operator that governs the master equation. As a by-product, we provide a sufficient condition for the robustness of the phase against a given decohering process. We illustrate our results by considering a two-level system in a Markovian interaction with the environment, where we show that the non-adiabatic geometric phase acquired by the system can be constructed in such a way that it is robust against both dephasing and spontaneous emission.Comment: 9 pages, 3 figures. v2: minor corrections and subsection IV.D added. Published versio

    Nonadiabatic coherent evolution of two-level systems under spontaneous decay

    Full text link
    In this paper we extend current perspectives in engineering reservoirs by producing a time-dependent master equation leading to a nonstationary superposition equilibrium state that can be nonadiabatically controlled by the system-reservoir parameters. Working with an ion trapped inside a nonindeal cavity we first engineer effective Hamiltonians that couple the electronic states of the ion with the cavity mode. Subsequently, two classes of decoherence-free evolution of the superposition of the ground and decaying excited levels are achieved: those with time-dependent azimuthal or polar angle. As an application, we generalise the purpose of an earlier study [Phys. Rev. Lett. 96, 150403 (2006)], showing how to observe the geometric phases acquired by the protected nonstationary states even under a nonadiabatic evolution.Comment: 5 pages, no figure

    Using quantum state protection via dissipation in a quantum-dot molecule to solve the Deutsch problem

    Full text link
    The wide set of control parameters and reduced size scale make semiconductor quantum dots attractive candidates to implement solid-state quantum computation. Considering an asymmetric double quantum dot coupled by tunneling, we combine the action of a laser field and the spontaneous emission of the excitonic state to protect an arbitrary superposition state of the indirect exciton and ground state. As a by-product we show how to use the protected state to solve the Deutsch problem.Comment: 8 pages, 1 figure, 2 table
    corecore