612 research outputs found
Adaptive Immersed Mesh Method (AIMM) for Fluid Structure Interaction
Our paper proposes an innovative approach for modeling Fluid-Structure
Interaction (FSI). Our method combines both traditional monolithic and
partitioned approaches, creating a hybrid solution that facilitates FSI. At
each time iteration, the solid mesh is immersed within a fluid-solid mesh, all
while maintaining its independent Lagrangian hyperelastic solver. The Eulerian
mesh encompasses both the fluid and solid components and accommodates various
physical phenomena. We enhance the interaction between solid and fluid through
anisotropic mesh adaptation and the Level-Set methods. This enables a more
accurate representation of their interaction. Together, these components
constitute the Adaptive Immersed Mesh Method (AIMM). For both solvers, we
utilize the Variational Multi-Scale (VMS) method, mitigating potential spurious
oscillations common with piecewise linear tetrahedral elements. The framework
operates in 3D with parallel computing capabilities. Our methods accuracy,
robustness, and capabilities are assessed through a series of 2D numerical
problems. Furthermore, we present various three-dimensional test cases and
compare their results to experimental data
Study of the Fusion-Fission Process in the Reaction
Fusion-fission and fully energy-damped binary processes of the
Cl+Mg reaction were investigated using particle-particle
coincidence techniques at a Cl bombarding energy of E
8 MeV/nucleon. Inclusive data were also taken in order to determine the partial
wave distribution of the fusion process. The fragment-fragment correlation data
show that the majority of events arises from a binary-decay process with a
relatively large multiplicity of secondary light-charged particles emitted by
the two primary excited fragments in the exit channel. No evidence is observed
for ternary-breakup processes, as expected from the systematics recently
established for incident energies below 15 MeV/nucleon and for a large number
of reactions. The binary-process results are compared with predictions of
statistical-model calculations. The calculations were performed using the
Extended Hauser-Feshbach method, based on the available phase space at the
scission point of the compound nucleus. This new method uses
temperature-dependent level densities and its predictions are in good agreement
with the presented experimental data, thus consistent with the fusion-fission
origin of the binary fully-damped yields.Comment: 30 pages standard REVTeX file, 10 eps Figures; to be published at the
European Physical Journal A - Hadrons and Nucle
Detection of Local Wall Stiffness Drop in Steel-Lined Pressure Tunnels and Shafts of Hydroelectric Power Plants Using Steep Pressure Wave Excitation and Wavelet Decomposition
A new monitoring approach for detecting, locating, and quantifying structurally weak reaches of steel-lined pressure tunnels and shafts is presented. These reaches arise from local deterioration of the backfill concrete and the rock mass surrounding the liner. The change of wave speed generated by the weakening of the radial-liner supports creates reflection boundaries for the incident pressure waves. The monitoring approach is based on the generation of transient pressure with a steep wave front and the analysis of the reflected pressure signals using the fast Fourier transform and wavelet decomposition methods. Laboratory experiments have been carried out to validate the monitoring technique. The multilayer system (steel-concrete-rock) of the pressurized shafts and tunnels is modeled by a one-layer system of the test pipe. This latter was divided into several reaches having different wall stiffnesses. Different longitudinal placements of a steel, aluminum, and PVC pipe reach were tested to validate the identification method of the weak section. DOI: 10.1061/(ASCE)HY.1943-7900.0000478. (C) 2012 American Society of Civil Engineers
Casimir force in critical ternary polymer solutions
Consider a mixture of two incompatible polymers A and B in a common good solvent, confined between two parallel plates separated by a finite distance L. We assume that these plates strongly attract one of the two
polymers close to the consolute point (critical adsorption). The plates then experience an effective force resulting from strong fluctuations of the composition. To simplify, we suppose that either plates have the same preference
to attract one component (symmetric plates) or they have an opposed preference (asymmetric plates). The force is attractive for symmetric plates and repulsive for asymmetric ones. We first exactly compute the force using
the blob model, and find that the attractive and repulsive forces decay similarly to L⁻⁴. To go beyond the blob model that is a mean-field theory, and in order to get a correct induced force, we apply the Renormalization-Group to a φ⁴ -field theory ( φ is the composition fluctuation), with two suitable boundary conditions at the surfaces. The main result is that the expected force is the sum of two contributions. The first one is the mean-field contribution decaying as L⁻⁴, and the second one is the force deviation originating from strong fluctuations of the composition that decreases rather as L⁻³. This implies the existence of some cross-over distance L* ∼ aNφ¹/² ( a is the monomer size, N is the polymerization degree of chains and φ is the monomer volumic fraction), which separates two distance-regimes.
For small distances (L L*) the fluctuation force is more important.Розглядається суміш двох несумісних полімерів A і B , що добре розчиняються в спільному розчиннику, вміщена між двома паралельними пластинами, розділеними скінченною відстанню L. Ми вважаємо, що поблизу точки розчинення вони сильно притягають один з двох полімерів (критична адсорбція). При цьому пластини знаходяться під впливом ефективної сили, породженої сильними флуктуаціями суміші. Для спрощення ми припускаємо, що або обидві пластини притягають той самий компонент (симетричні пластини) або вони віддають перевагу різним компонентам (асиметричні пластини). Симетричним пластинам відповідає сила притягання, асиметричним – відштовхування. Спершу ми точно розрахували цю силу, використовуючи краплинну модель, і встановили, що сили притягання і відштовхування загасають подібним чином як L⁻⁴. Щоб вийти поза межі краплинної моделі, яка відповідає наближенню середнього поля, і з метою отримати правильний вигляд індукованої сили, ми застосували ренорм-груповий підхід до теорії поля φ⁴ ( φ – флуктуація суміші) з двома відповідними граничними умовами на поверхнях. У результаті встановлено, що шукана сила є сумою двох вкладів. Перший з них – це вклад середнього поля, що загасає якL⁻⁴, а другий – відхилення, викликане сильними флуктуаціями суміші, що зменшується радше як L⁻³. Це означає, що існує певна відстань кроссоверу L* ∼ aNφ¹/² ( a – розмір мономера, N – ступінь полімеризації ланцюжків і φ – об’ємна частка мономера), що розділяє характерні відстані двох згаданих режимів. На малих відстанях (L L*) більш важливим стає флуктуаційний вклад
8Be cluster emission versus alpha evaporation in 28Si + 12C
The possible occurence of highly deformed configurations in the Ca
di-nuclear system formed in the Si + C reaction is investigated
by analyzing the spectra of emitted light charged particles. Both inclusive and
exclusive measurements of the heavy fragments (A 10) and their
associated light charged particles (protons and particles) have been
made at the IReS Strasbourg {\sc VIVITRON} Tandem facility at bombarding
energies of (Si) = 112 MeV and 180 MeV by using the {\sc
ICARE} charged particle multidetector array. The energy spectra, velocity
distributions, in-plane and out-of-plane angular correlations of light charged
particles are compared to statistical-model calculations using a consistent set
of parameters with spin-dependent level densities. This spin dependence
approach suggests the onset of large nuclear deformation in Ca at high
spin. This conclusion might be connected with the recent observation of
superdeformed bands in the Ca nucleus. The analysis of
particles in coincidence with S fragments suggests a surprisingly strong
Be cluster emission of a binary nature.Comment: 39 pages 15 figure
Search for emission of unstable Be clusters from hot Ca and Ni nuclei
The possible occurence of highly deformed configurations is investigated in
the Ca and Ni di-nuclear systems as formed in the Si +
C and Si + Si reactions, respectively, by using the
properties of emitted light charged particles. Inclusive as well as exclusive
data of the heavy fragments (A 6) and their associated light charged
particles (p, d, t, and -particles) have been collected at the IReS
Strasbourg VIVITRON Tandem facility with two bombarding energies
Si) = 112 and 180 MeV by using the ICARE charged particle
multidetector array, which consists of nearly 40 telescopes. The measured
energy spectra, velocity distributions, in-plane and out-of-plane angular
correlations are analysed by Monte Carlo CASCADE statistical-model calculations
using a consistent set of parameters with spin-dependent level densities.
Although significant deformation effects at high spin are needed, the remaining
disagreement observed in the Si + C reaction for the S
evaporation residue suggests an unexpected large unstable Be cluster
emission of a binary nature.Comment: 13 pages latex, 9 eps figures. Paper presented at the XXXIX
International Winter Meeting on Nuclear Physics, Bormio(Italy) January 22-27,
2001 (to be published at Ricerca Scientifica ed Educazione Permanente
On perturbations of Dirac operators with variable magnetic field of constant direction
We carry out the spectral analysis of matrix valued perturbations of
3-dimensional Dirac operators with variable magnetic field of constant
direction. Under suitable assumptions on the magnetic field and on the
pertubations, we obtain a limiting absorption principle, we prove the absence
of singular continuous spectrum in certain intervals and state properties of
the point spectrum. Various situations, for example when the magnetic field is
constant, periodic or diverging at infinity, are covered. The importance of an
internal-type operator (a 2-dimensional Dirac operator) is also revealed in our
study. The proofs rely on commutator methods.Comment: 12 page
Epidermolysis Bullosa in children: the central role of the pediatrician
Epidermolysis bullosa (EB) is a severe hereditary disease characterized by defective epithelial adhesion causing mucocutaneous fragility. The major types are EB simplex (EBS), junctional EB (JEB), dystrophic EB (DEB) and more than 35 EB subtypes. Another very rare type of EB is Kindler EB (KEB). Clinically, it is a very heterogeneous disease which ranges from localized to extensive skin lesions with frequent multisystem extra cutaneous involvement. The role of a pediatrician-dermatologist cooperation within a multidisciplinary team is fundamental for both the diagnosis and management contributing to these patients' better life expectancy. Aim of this study is to describe clinical and laboratory characteristics of the main EB subtypes focusing on nutritional and gastrointestinal aspects, providing information to aid the paediatric management of children with EB. This retrospective study reviewed the cases of 160 pediatric EB patients (76 male and 84 female): 31 patients affected by EBS (mean age +/- SD: 4.37 +/- 7.14), 21 patients affected by JEB (mean age +/- SD: 9.26 +/- 17.30) and 108 with DEB (mean age +/- SD: 11.61 +/- 13.48). All patients were admitted at the Bambino Gesu Children's Hospital in Rome, between June 2005 to June 2020. The reduced gastrointestinal absorption, chronic losses, esophageal stenosis and chronic inflammatory state, represent the basis of nutritional problems of EB patients. In particular, anemia represents one of the most important complications of DEB patients which could require transfusion-dependent patterns. Malnutrition, vitamin deficiencies and anemia have been related to growth delay in EB patients. A specific diet with a balance of all macronutrients is required and improving caloric intake with sugar limitations is fundamental to prevent dental caries and tooth decay typical of EB patients. While sepsis proved to be the major cause of morbidity and mortality in younger patients, squamous cell carcinoma was mostly observed in older patients, especially those affected by DEB. Patients with EB require regular monitoring for complications and sequelae with a frequency of evaluations which varies based on age and EB subtypes. Cooperation among medical teams involving paediatricians, dermatologists, specialist clinicians including nutritionists such as families and patient's association is fundamental to approach the disease and improve the quality of life of these patients
Large Deformation Effects in the N = Z 44Ti Compound Nucleus
The N = Z 44Ti* nucleus has been populated in Fusion Evaporation process at
very high excitation energies and angular momenta using two entrance channels
with different mass-asymmetry. The deformation effects in the rapidly rotating
nuclei have been investigated through the energy distribution of the
alpha-particle combined to statistical-model calculations. In the case of
low-multiplicity events, the ratio between first particle emitted has been
measured and shows significant disagreement with the predictions of the
statistical-model. This may explain The large discrepancies observed in proton
energy spectra measured in previous experiments performed in the same mass
region.Comment: Proceeding of the 10th International Conference on Nuclear Reaction
Mechanisms, Varenna Italy, June 9-13 2003. 10 pages, 6 figures, 1 tabl
- …