113 research outputs found
Identification of new susceptibility loci for osteoarthritis (arcOGEN):a genome-wide association study
To access publisher's full text version of this article. Please click on the hyperlink in Additional Links field.Osteoarthritis is the most common form of arthritis worldwide and is a major cause of pain and disability in elderly people. The health economic burden of osteoarthritis is increasing commensurate with obesity prevalence and longevity. Osteoarthritis has a strong genetic component but the success of previous genetic studies has been restricted due to insufficient sample sizes and phenotype heterogeneity. We undertook a large genome-wide association study (GWAS) in 7410 unrelated and retrospectively and prospectively selected patients with severe osteoarthritis in the arcOGEN study, 80% of whom had undergone total joint replacement, and 11,009 unrelated controls from the UK. We replicated the most promising signals in an independent set of up to 7473 cases and 42,938 controls, from studies in Iceland, Estonia, the Netherlands, and the UK. All patients and controls were of European descent. We identified five genome-wide significant loci (binomial test p≤5·0×10(-8)) for association with osteoarthritis and three loci just below this threshold. The strongest association was on chromosome 3 with rs6976 (odds ratio 1·12 [95% CI 1·08-1·16]; p=7·24×10(-11)), which is in perfect linkage disequilibrium with rs11177. This SNP encodes a missense polymorphism within the nucleostemin-encoding gene GNL3. Levels of nucleostemin were raised in chondrocytes from patients with osteoarthritis in functional studies. Other significant loci were on chromosome 9 close to ASTN2, chromosome 6 between FILIP1 and SENP6, chromosome 12 close to KLHDC5 and PTHLH, and in another region of chromosome 12 close to CHST11. One of the signals close to genome-wide significance was within the FTO gene, which is involved in regulation of bodyweight-a strong risk factor for osteoarthritis. All risk variants were common in frequency and exerted small effects. Our findings provide insight into the genetics of arthritis and identify new pathways that might be amenable to future therapeutic intervention.Arthritis Research UK
1803
HD 213885b: A Transiting 1-D-Period Super-Earth With An Earth-Like Composition Around A Bright (V = 7.9) Star Unveiled By TESS
We report the discovery of the 1.008-d, ultrashort period (USP) super-Earth HD 213885b (TOI-141b) orbiting the bright (V = 7.9) star HD 213885 (TOI-141, TIC 403224672), detected using photometry from the recently launched TESS mission. Using FEROS, HARPS, and CORALIE radial velocities, we measure a precise mass of 8.8 ± 0.6 M⊕ for this 1.74 ± 0.05 R⊕ exoplanet, which provides enough information to constrain its bulk composition – similar to Earth’s but enriched in iron. The radius, mass, and stellar irradiation of HD 213885b are, given our data, very similar to 55 Cancri e, making this exoplanet a good target to perform comparative exoplanetology of short period, highly irradiated super-Earths. Our precise radial velocities reveal an additional 4.78-d signal which we interpret as arising from a second, non-transiting planet in the system, HD 213885c, whose minimum mass of 19.9 ± 1.4 M⊕ makes it consistent with being a Neptune-mass exoplanet. The HD 213885 system is very interesting from the perspective of future atmospheric characterization, being the second brightest star to host an USP transiting super-Earth (with the brightest star being, in fact, 55 Cancri). Prospects for characterization with present and future observatories are discussed
Unexpected diversity in socially synchronized rhythms of shorebirds
The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions, but free-living individuals have to temporally synchronize their activities with those of others, including potential mates, competitors, prey and predators. Individuals can temporally segregate their daily activities (for example, prey avoiding predators, subordinates avoiding dominants) or synchronize their activities (for example, group foraging, communal defence, pairs reproducing or caring for offspring). The behavioural rhythms that emerge from such social synchronization and the underlying evolutionary and ecological drivers that shape them remain poorly understood. Here we investigate these rhythms in the context of biparental care, a particularly sensitive phase of social synchronization where pair members potentially compromise their individual rhythms. Using data from 729 nests of 91 populations of 32 biparentally incubating shorebird species, where parents synchronize to achieve continuous coverage of developing eggs, we report remarkable within-and between-species diversity in incubation rhythms. Between species, the median length of one parent's incubation bout varied from 1-19 h, whereas period length-the time in which a parent's probability to incubate cycles once between its highest and lowest value-varied from 6-43 h. The length of incubation bouts was unrelated to variables reflecting energetic demands, but species relying on crypsis (the ability to avoid detection by other animals) had longer incubation bouts than those that are readily visible or who actively protect their nest against predators. Rhythms entrainable to the 24-h light-dark cycle were less prevalent at high latitudes and absent in 18 species. Our results indicate that even under similar environmental conditions and despite 24-h environmental cues, social synchronization can generate far more diverse behavioural rhythms than expected from studies of individuals in captivity. The risk of predation, not the risk of starvation, may be a key factor underlying the diversity in these rhythms.</p
Early Release Science of the exoplanet WASP-39b with JWST NIRCam
Measuring the metallicity and carbon-to-oxygen (C/O) ratio in exoplanet
atmospheres is a fundamental step towards constraining the dominant chemical
processes at work and, if in equilibrium, revealing planet formation histories.
Transmission spectroscopy provides the necessary means by constraining the
abundances of oxygen- and carbon-bearing species; however, this requires broad
wavelength coverage, moderate spectral resolution, and high precision that,
together, are not achievable with previous observatories. Now that JWST has
commenced science operations, we are able to observe exoplanets at previously
uncharted wavelengths and spectral resolutions. Here we report time-series
observations of the transiting exoplanet WASP-39b using JWST's Near InfraRed
Camera (NIRCam). The long-wavelength spectroscopic and short-wavelength
photometric light curves span 2.0 - 4.0 m, exhibit minimal systematics,
and reveal well-defined molecular absorption features in the planet's spectrum.
Specifically, we detect gaseous HO in the atmosphere and place an upper
limit on the abundance of CH. The otherwise prominent CO feature at 2.8
m is largely masked by HO. The best-fit chemical equilibrium models
favour an atmospheric metallicity of 1-100 solar (i.e., an enrichment
of elements heavier than helium relative to the Sun) and a sub-stellar
carbon-to-oxygen (C/O) ratio. The inferred high metallicity and low C/O ratio
may indicate significant accretion of solid materials during planet formation
or disequilibrium processes in the upper atmosphere.Comment: 35 pages, 13 figures, 3 tables, Nature, accepte
Two mini-Neptunes transiting the adolescent K-star HIP 113103 confirmed with TESS and CHEOPS
We report the discovery of two mini-Neptunes in near 2:1 resonance orbits (P = 7.610303 d for HIP 113103 b and P = 14.245651 d for HIP 113103 c ) around the adolescent K-star HIP 113103 (TIC 121490076 ). The planet system was first identified from the TESS mission, and was confirmed via additional photometric and spectroscopic observations, including a ∼17.5 hour observation for the transits of both planets using ESA CHEOPS . We place ≤4.5 min and ≤2.5 min limits on the absence of transit timing variations over the three year photometric baseline, allowing further constraints on the orbital eccentricities of the system beyond that available from the photometric transit duration alone. With a planetary radius of Rp = R⊕, HIP 113103 b resides within the radius gap, and this might provide invaluable information on the formation disparities between super-Earths and mini-Neptunes. Given the larger radius Rp = R⊕ for HIP 113103 c , and close proximity of both planets to HIP 113103 , it is likely that HIP 113103 b might have lost (or is still losing) its primordial atmosphere. We therefore present simulated atmospheric transmission spectra of both planets using JWST , HST , and Twinkle . It demonstrates a potential metallicity difference (due to differences in their evolution) would be a challenge to detect if the atmospheres are in chemical equilibrium. As one of the brightest multi sub-Neptune planet systems suitable for atmosphere follow up, HIP 113103 b and HIP 113103 c could provide insight on planetary evolution for the sub-Neptune K-star population
Dense sampling of bird diversity increases power of comparative genomics (vol 587, pg 252, 2020)
Publishe
TOI-1259Ab - A Gas Giant Planet with 2.7 Per Cent Deep Transits and a Bound white Dwarf Companion
We present TOI-1259Ab, a 1.0RJup gas giant planet transiting a 0.71R⊙ K-dwarf on a 3.48 d orbit. The system also contains a bound white dwarf companion TOI-1259B with a projected distance of ∼1600 au from the planet host. Transits are observed in nine TESS sectors and are 2.7 per cent deep - among the deepest known - making TOI-1259Ab a promising target for atmospheric characterization. Our follow-up radial velocity measurements indicate a variability of semiamplitude , implying a planet mass of 0.44MJup. By fitting the spectral energy distribution of the white dwarf, we derive a total age of Gyr for the system. The K dwarf's light curve reveals rotational variability with a period of 28 d, which implies a gyrochronology age broadly consistent with the white dwarf's total age. © 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.Fellow of the Swiss National Science Foundation
TOI-1259Ab – a gas giant planet with 2.7 per cent deep transits and a bound white dwarf companion
We present TOI-1259Ab, a 1.0RJup gas giant planet transiting a 0.71R⊙ K-dwarf on a 3.48 d orbit. The system also contains a bound white dwarf companion TOI-1259B with a projected distance of ∼1600 au from the planet host. Transits are observed in nine TESS sectors and are 2.7 per cent deep – among the deepest known – making TOI-1259Ab a promising target for atmospheric characterization. Our follow-up radial velocity measurements indicate a variability of semiamplitude , implying a planet mass of 0.44MJup. By fitting the spectral energy distribution of the white dwarf, we derive a total age of Gyr for the system. The K dwarf’s light curve reveals rotational variability with a period of 28 d, which implies a gyrochronology age broadly consistent with the white dwarf’s total age
Recommended from our members
A benchmark JWST near-infrared spectrum for the exoplanet WASP-39 b
Observing exoplanets through transmission spectroscopy supplies detailed information about their atmospheric composition, physics and chemistry. Before the James Webb Space Telescope (JWST), these observations were limited to a narrow wavelength range across the near-ultraviolet to near-infrared, alongside broadband photometry at longer wavelengths. To understand more complex properties of exoplanet atmospheres, improved wavelength coverage and resolution are necessary to robustly quantify the influence of a broader range of absorbing molecular species. Here we present a combined analysis of JWST transmission spectroscopy across four different instrumental modes spanning 0.5–5.2 μm using Early Release Science observations of the Saturn-mass exoplanet WASP-39 b. Our uniform analysis constrains the orbital and stellar parameters within subpercentage precision, including matching the precision obtained by the most precise asteroseismology measurements of stellar density to date, and it further confirms the presence of Na, K, H2O, CO, CO2 and SO2 as atmospheric absorbers. Through this process, we have improved the agreement between the transmission spectra of all modes, except for the NIRSpec PRISM, which is affected by partial saturation of the detector. This work provides strong evidence that uniform light curve analysis is an important aspect to ensuring reliability when comparing the high-precision transmission spectra provided by JWST
- …