1,497 research outputs found

    Nuclear shadowing in inclusive and tagged deuteron structure functions and extraction of F_2^p-F_2^n at small x from electron-deuteron collider data

    Full text link
    We review predictions of the theory of leading twist nuclear shadowing for inclusive unpolarized and polarized deuteron structure functions F_2^D, g_1^D and b_1^D and for the tagged deuteron structure function F_2^D(x,Q^2,\vec{p}). We analyze the possibility to extract the neutron structure function F_2^n from electron-deuteron data and demonstrate that an account of leading twist nuclear shadowing leads to large corrections for the extraction of F_2^n from the future deuteron collider data both in the inclusive and in the tagged structure function modes. We suggest several strategies to address the extraction of F_2^n and to measure at the same time the effect of nuclear shadowing via the measurement of the distortion of the proton spectator spectrum in the semi-inclusive e D \to e^{\prime}NX process. We address the issue of the final state interactions in the e D \to e^{\prime}NX process and examine how they affect the extraction of F_2^n.Comment: 19 pages, 7 figures. Published in Mod. Phys. Lett.

    Resolving the J/\psi RHIC puzzles at LHC

    Full text link
    Experiments with gold-gold collisions at RHIC have revealed (i) stronger suppression of charmonium production at forward rapidity than at midrapidity and (ii) the similarity between the suppression degrees at RHIC and SPS energies. To describe these findings we employ the model that includes nuclear shadowing effects, calculated within the Glauber-Gribov theory, rapidity-dependent absorptive mechanism, caused by energy-momentum conservation, and dissociation and recombination of the charmonium due to interaction with co-moving matter. The free parameters of the model are tuned and fixed by comparison with experimental data at lower energies. A good agreement with the RHIC results concerning the rapidity and centrality distributions is obtained for both heavy Au+Au and light Cu+Cu colliding system. For pA and A+A collisions at LHC the model predicts stronger suppression of the charmonium and bottomonium yields in stark contrast to thermal model predictions.Comment: SQM2008 proceedings, 6 page

    Asymptotic behavior of double parton distribution functions

    Full text link
    The double parton distribution functions are investigated in the region of small longitudinal momentum fractions in the leading logarithm approximation of perturbative QCD. It is shown that these functions have the factorization property in the case of one slow and one fast parton.Comment: 7 pages, revtex

    Probing coherent charmonium photoproduction off light nuclei at medium energies

    Full text link
    We demonstrate how the elementary amplitudes γNΨN\gamma N\to \Psi N, the amplitude of the nondiagonal J/ψNψNJ/\psi N\Leftrightarrow \psi' N transition, and the total J/ψNJ/\psi N and ψN\psi' N cross sections can be determined from measurements of the coherent J/ψJ/\psi and ψ\psi' photoproduction off light nuclei at moderate energies. For this purpose we provide a detailed numerical analysis of the coherent charmonium photoproduction off silicon within the generalized vector dominance model (GVDM) adjusted to account for the physics of charmonium models and color transparency phenomenon.Comment: 8 pages, 5 figures (color

    Double parton scattering in double logarithm approximation of perturbative QCD

    Full text link
    Using the explicit form of the known single distribution functions (the Green's functions) in the double logarithm approximation of perturbative QCD, we analyze the structure of splitting diagrams as a source of double parton perturbative correlations in the proton. The related phenomenological effects are discussed for the conditions of the LHC experiments.Comment: 8 pages, 1 figure, Refs. and explanations added, published version (Phys. Rev. D

    The casuality and/or energy-momentum conservation constraints on QCD amplitudes in small x regime

    Get PDF
    The causality and/or the energy-momentum constraints on the amplitudes of high energy processes are generalized to QCD. The constraints imply that the energetic parton may experience at most one inelastic collision only and that the number of the constituents in the light cone wave function of the projectile is increasing with the collision energy and the atomic number.Comment: 24 pages,8 figures. The paper is streamlined, some references are changed and misprints are eliminate

    On the behaviour of single scale hard small xx processes in QCD near the black disc limit

    Full text link
    We argue that at sufficiently small Bjorken xx where pQCD amplitude rapidly increases with energy and violates probability conservation the shadowing effects in the single-scale small xx hard QCD processes can be described by an effective quantum field theory of interacting quasiparticles. The quasiparticles are the perturbative QCD ladders. We find, within the WKB approximation, that the smallness of the QCD coupling constant ensures the hierarchy among many-quasiparticle interactions evaluated within physical vacuum and in particular, the dominance in the Lagrangian of the triple quasiparticle interaction. It is explained that the effective field theory considered near the perturbative QCD vacuum contains a tachyon relevant for the divergency of the perturbative QCD series at sufficiently small xx. We solve the equations of motion of the effective field theory within the WKB approximation and find the physical vacuum and the transitions between the false (perturbative) and physical vacua. Classical solutions which dominate transitions between the false and physical vacua are kinks that cannot be decomposed into perturbative series over the powers of αs\alpha_s. These kinks lead to color inflation and the Bose-Einstein condensation of quasiparticles. The account of the quantum fluctuations around the WKB solution reveals the appearance of the "massless" particles-- "phonons". It is explained that "phonons" are relevant for the black disc behaviour of small xx processes, leading to a Froissart rise of the cross-section. The condensation of the ladders produces a color network occupying a "macroscopic" longitudinal volume. We discuss briefly the possible detection of new QCD effects.Comment: 24 pages, 1 Figure. References added, and several misprints eliminate

    A fresh look at double parton scattering

    Full text link
    A revised formula for the inclusive cross section for double parton scattering in terms of the modified collinear two-parton distributions extracted from deep inelastic scattering is suggested. The possible phenomenological issues are discussed.Comment: 6 pages, 2 figures, revtex4, discussion slightly modified, 3 references adde

    Gluon-gluon contributions to the production of continuum diphoton pairs at hadron colliders

    Full text link
    We compute the contributions to continuum photon pair production at hadron colliders from processes initiated by gluon-gluon and gluon-quark scattering into two photons through a four-leg virtual quark loop. Complete two-loop cross sections in perturbative quantum chromodynamics are combined with contributions from soft parton radiation resummed to all orders in the strong coupling strength. The structure of the resummed cross section is examined in detail, including a new type of unintegrated parton distribution function affecting azimuthal angle distributions of photons in the pair's rest frame. As a result of this analysis, we predict diphoton transverse momentum distributions in gluon-gluon scattering in wide ranges of kinematic parameters at the Fermilab Tevatron collider and the CERN Large Hadron Collider.Comment: 28 pages, 11 figures; published versio

    Anomalous Dimensions of High Twist Operators in QCD at N1N \rightarrow 1 and large $Q^2

    Full text link
    The anomalous dimensions of high-twist operators in deeply inelastic scattering (γ2n\gamma_{2n}) are calculated in the limit when the moment variable N1N \rightarrow 1 (or xB0x_B\rightarrow 0) and at large Q2Q^2 (the double logarithmic approximation) in perturbative QCD. We find that the value of γ2n(N1)\gamma_{2n}(N-1) in this approximation behaves as NcαSπ(N1)n2(1+δ3(n21)){N_c \alpha_S \over \pi (N-1)} n^2(1 + {\delta \over 3} (n^2-1)) where δ102\delta \approx 10^{-2}. This implies that the contributions of the high-twist operators give rise to an earlier onset of shadowing than was estimated before. The derivation makes use of a Pomeron exchange approximation, with the Pomerons interacting attractively. We find that they behave as a system of fermions.Comment: jytex (see macros directory), 18 pages , 9 figures, uuencoded at back of file, FERMILAB-PUB-93/243-
    corecore