14 research outputs found

    Mixing quantum and classical mechanics and uniqueness of Planck's constant

    Get PDF
    Observables of quantum or classical mechanics form algebras called quantum or classical Hamilton algebras respectively (Grgin E and Petersen A (1974) {\it J Math Phys} {\bf 15} 764\cite{grginpetersen}, Sahoo D (1977) {\it Pramana} {\bf 8} 545\cite{sahoo}). We show that the tensor-product of two quantum Hamilton algebras, each characterized by a different Planck's constant is an algebra of the same type characterized by yet another Planck's constant. The algebraic structure of mixed quantum and classical systems is then analyzed by taking the limit of vanishing Planck's constant in one of the component algebras. This approach provides new insight into failures of various formalisms dealing with mixed quantum-classical systems. It shows that in the interacting mixed quantum-classical description, there can be no back-reaction of the quantum system on the classical. A natural algebraic requirement involving restriction of the tensor product of two quantum Hamilton algebras to their components proves that Planck's constant is unique.Comment: revised version accepted for publication in J.Phys.A:Math.Phy
    corecore