430 research outputs found

    Closed-loop approach to thermodynamics

    Full text link
    We present the closed loop approach to linear nonequilibrium thermodynamics considering a generic heat engine dissipatively connected to two temperature baths. The system is usually quite generally characterized by two parameters: the output power PP and the conversion efficiency η\eta, to which we add a third one, the working frequency ω\omega. We establish that a detailed understanding of the effects of the dissipative coupling on the energy conversion process, necessitates the knowledge of only two quantities: the system's feedback factor ÎČ\beta and its open-loop gain A0A_{0}, the product of which, A0ÎČA_{0}\beta, characterizes the interplay between the efficiency, the output power and the operating rate of the system. By placing thermodynamics analysis on a higher level of abstraction, the feedback loop approach provides a versatile and economical, hence a very efficient, tool for the study of \emph{any} conversion engine operation for which a feedback factor may be defined

    Publisher Correction: Listeners’ perceptions of the certainty and honesty of a speaker are associated with a common prosodic signature

    Get PDF
    Correction to: Nature Communications https://doi.org/10.1038/s41467-020-20649-4, published online 8 February 2021. The original version of the Supplementary Information associated with this Article contained errors in Supplementary Figures 1, 3, 4, 5, 7 and 8 and an error in the figure legend of Supplementary Figure 8. The HTML has been updated to include a corrected version of the Supplementary Information; the original incorrect version of the Supplementary Information file can be found as Supplementary Information associated with this Correction

    Listeners’ perceptions of the certainty and honesty of a speaker are associated with a common prosodic signature

    Get PDF
    The success of human cooperation crucially depends on mechanisms enabling individuals to detect unreliability in their conspecifics. Yet, how such epistemic vigilance is achieved from naturalistic sensory inputs remains unclear. Here we show that listeners’ perceptions of the certainty and honesty of other speakers from their speech are based on a common prosodic signature. Using a data-driven method, we separately decode the prosodic features driving listeners’ perceptions of a speaker’s certainty and honesty across pitch, duration and loudness. We find that these two kinds of judgments rely on a common prosodic signature that is perceived independently from individuals’ conceptual knowledge and native language. Finally, we show that listeners extract this prosodic signature automatically, and that this impacts the way they memorize spoken words. These findings shed light on a unique auditory adaptation that enables human listeners to quickly detect and react to unreliability during linguistic interactions

    Period-luminosity relations in evolved red giants explained by solar-like oscillations

    Full text link
    Solar-like oscillations in red giants have been investigated with CoRoT and Kepler, while pulsations in more evolved M giants have been studied with ground-based microlensing surveys. After 3.1 years of observation with Kepler, it is now possible to make a link between these different observations of semi-regular variables. We aim to identify period-luminosity sequences in evolved red giants identified as semi-regular variables. Then, we investigate the consequences of the comparison of ground-based and space-borne observations. We have first measured global oscillation parameters of evolved red giants observed with Kepler with the envelope autocorrelation function method. We then used an extended form of the universal red giant oscillation pattern, extrapolated to very low frequency, to fully identify their oscillations. From the link between red giant oscillations observed by Kepler and period-luminosity sequences, we have identified these relations in evolved red giants as radial and non-radial solar-like oscillations. We were able to expand scaling relations at very low frequency. This helped us to identify the different sequences of period-luminosity relations, and allowed us to propose a calibration of the K magnitude with the observed frequency large separation. Interpreting period-luminosity relations in red giants in terms of solar-like oscillations allows us to investigate, with a firm physical basis, the time series obtained from ground-based microlensing surveys. This can be done with an analytical expression that describes the low-frequency oscillation spectra. The different behavior of oscillations at low frequency, with frequency separations scaling only approximately with the square root of the mean stellar density, can be used to address precisely the physics of the semi-regular variables.Comment: Accepted in A&

    Asymptotic and measured large frequency separations

    Full text link
    With the space-borne missions CoRoT and Kepler, a large amount of asteroseismic data is now available. So-called global oscillation parameters are inferred to characterize the large sets of stars, to perform ensemble asteroseismology, and to derive scaling relations. The mean large separation is such a key parameter. It is therefore crucial to measure it with the highest accuracy. As the conditions of measurement of the large separation do not coincide with its theoretical definition, we revisit the asymptotic expressions used for analysing the observed oscillation spectra. Then, we examine the consequence of the difference between the observed and asymptotic values of the mean large separation. The analysis is focused on radial modes. We use series of radial-mode frequencies to compare the asymptotic and observational values of the large separation. We propose a simple formulation to correct the observed value of the large separation and then derive its asymptotic counterpart. We prove that, apart from glitches due to stellar structure discontinuities, the asymptotic expansion is valid from main-sequence stars to red giants. Our model shows that the asymptotic offset is close to 1/4, as in the theoretical development. High-quality solar-like oscillation spectra derived from precise photometric measurements are definitely better described with the second-order asymptotic expansion. The second-order term is responsible for the curvature observed in the \'echelle diagrams used for analysing the oscillation spectra and this curvature is responsible for the difference between the observed and asymptotic values of the large separation. Taking it into account yields a revision of the scaling relations providing more accurate asteroseismic estimates of the stellar mass and radius.Comment: accepted in A&

    The CoRoT target HD 49933: 2- Comparison of theoretical mode amplitudes with observations

    Full text link
    From the seismic data obtained by CoRoT for the star HD 49933 it is possible, as for the Sun, to constrain models of the excitation of acoustic modes by turbulent convection. We compare a stochastic excitation model described in Paper I (arXiv:0910.4027) with the asteroseismology data for HD 49933, a star that is rather metal poor and significantly hotter than the Sun. Using the mode linewidths measured by CoRoT for HD 49933 and the theoretical mode excitation rates computed in Paper I, we derive the expected surface velocity amplitudes of the acoustic modes detected in HD 49933. Using a calibrated quasi-adiabatic approximation relating the mode amplitudes in intensity to those in velocity, we derive the expected values of the mode amplitude in intensity. Our amplitude calculations are within 1-sigma error bars of the mode surface velocity spectrum derived with the HARPS spectrograph. The same is found with the mode amplitudes in intensity derived for HD 49933 from the CoRoT data. On the other hand, at high frequency, our calculations significantly depart from the CoRoT and HARPS measurements. We show that assuming a solar metal abundance rather than the actual metal abundance of the star would result in a larger discrepancy with the seismic data. Furthermore, calculations that assume the ``new'' solar chemical mixture are in better agreement with the seismic data than those that assume the ``old'' solar chemical mixture. These results validate, in the case of a star significantly hotter than the Sun and Alpha Cen A, the main assumptions in the model of stochastic excitation. However, the discrepancies seen at high frequency highlight some deficiencies of the modelling, whose origin remains to be understood.Comment: 8 pages, 3 figures (B-W and color), accepted for publication in Astronomy & Astrophysics. Corrected typo in Eq. (4). Updated references. Language improvement

    Listeners’ perceptions of the certainty and honesty of a speaker are associated with a common prosodic signature

    Get PDF
    The success of human cooperation crucially depends on mechanisms enabling individuals to detect unreliability in their conspecifics. Yet, how such epistemic vigilance is achieved from naturalistic sensory inputs remains unclear. Here we show that listeners’ perceptions of the certainty and honesty of other speakers from their speech are based on a common prosodic signature. Using a data-driven method, we separately decode the prosodic features driving listeners’ perceptions of a speaker’s certainty and honesty across pitch, duration and loudness. We find that these two kinds of judgments rely on a common prosodic signature that is perceived independently from individuals’ conceptual knowledge and native language. Finally, we show that listeners extract this prosodic signature automatically, and that this impacts the way they memorize spoken words. These findings shed light on a unique auditory adaptation that enables human listeners to quickly detect and react to unreliability during linguistic interactions
    • 

    corecore