6 research outputs found
Introduction to Khovanov Homologies. I. Unreduced Jones superpolynomial
An elementary introduction to Khovanov construction of superpolynomials.
Despite its technical complexity, this method remains the only source of a
definition of superpolynomials from the first principles and therefore is
important for development and testing of alternative approaches. In this first
part of the review series we concentrate on the most transparent and
unambiguous part of the story: the unreduced Jones superpolynomials in the
fundamental representation and consider the 2-strand braids as the main
example. Already for the 5_1 knot the unreduced superpolynomial contains more
items than the ordinary Jones.Comment: 33 page
Challenges of beta-deformation
A brief review of problems, arising in the study of the beta-deformation,
also known as "refinement", which appears as a central difficult element in a
number of related modern subjects: beta \neq 1 is responsible for deviation
from free fermions in 2d conformal theories, from symmetric omega-backgrounds
with epsilon_2 = - epsilon_1 in instanton sums in 4d SYM theories, from
eigenvalue matrix models to beta-ensembles, from HOMFLY to super-polynomials in
Chern-Simons theory, from quantum groups to elliptic and hyperbolic algebras
etc. The main attention is paid to the context of AGT relation and its possible
generalizations.Comment: 20 page