8 research outputs found
Challenges of beta-deformation
A brief review of problems, arising in the study of the beta-deformation,
also known as "refinement", which appears as a central difficult element in a
number of related modern subjects: beta \neq 1 is responsible for deviation
from free fermions in 2d conformal theories, from symmetric omega-backgrounds
with epsilon_2 = - epsilon_1 in instanton sums in 4d SYM theories, from
eigenvalue matrix models to beta-ensembles, from HOMFLY to super-polynomials in
Chern-Simons theory, from quantum groups to elliptic and hyperbolic algebras
etc. The main attention is paid to the context of AGT relation and its possible
generalizations.Comment: 20 page
Torus knots and the rational DAHA
We conjecturally extract the triply graded Khovanov-Rozansky homology of the (m;n) torus knot from the unique finite-dimensional simple representation of the rational DAHA of type A, rank n - 1, and central character m/n. The conjectural differentials of Gukov, Dunfield, and the third author receive an explicit algebraic expression in this picture, yielding a prescription for the doubly graded Khovanov-Rozansky homologies. We match our conjecture to previous conjectures of the first author relating knot homology to q; t-Catalan numbers and to previous conjectures of the last three authors relating knot homology to Hilbert schemes on singular curves
Recommended from our members
The hilbert scheme of a plane curve singularity and the HOMFLY homology of its link
We conjecture an expression for the dimensions of the Khovanov-Rozansky HOMFLY homology groups of the link of a plane curve singularity in terms of the weight polynomials of Hilbert schemes of points scheme-theoretically supported on the singularity. The conjecture specializes to our previous conjecture (2012) relating the HOMFLY polynomial to the Euler numbers of the same spaces upon setting t=-1. By generalizing results of Piontkowski on the structure of compactified Jacobians to the case of Hilbert schemes of points, we give an explicit prediction of the HOMFLY homology of a (k,n) torus knot as a certain sum over diagrams. The Hilbert scheme series corresponding to the summand of the HOMFLY homology with minimal “a” grading can be recovered from the perverse filtration on the cohomology of the compactified Jacobian. In the case of (k,n) torus knots, this space furnishes the unique finite-dimensional simple representation of the rational spherical Cherednik algebra with central character k/n. Up to a conjectural identification of the perverse filtration with a previously introduced filtration, the work of Haiman and Gordon and Stafford gives formulas for the Hilbert scheme series when k=mn+1
The hilbert scheme of a plane curve singularity and the HOMFLY homology of its link
We conjecture an expression for the dimensions of the Khovanov-Rozansky HOMFLY homology groups of the link of a plane curve singularity in terms of the weight polynomials of Hilbert schemes of points scheme-theoretically supported on the singularity. The conjecture specializes to our previous conjecture (2012) relating the HOMFLY polynomial to the Euler numbers of the same spaces upon setting t=-1. By generalizing results of Piontkowski on the structure of compactified Jacobians to the case of Hilbert schemes of points, we give an explicit prediction of the HOMFLY homology of a (k,n) torus knot as a certain sum over diagrams. The Hilbert scheme series corresponding to the summand of the HOMFLY homology with minimal “a” grading can be recovered from the perverse filtration on the cohomology of the compactified Jacobian. In the case of (k,n) torus knots, this space furnishes the unique finite-dimensional simple representation of the rational spherical Cherednik algebra with central character k/n. Up to a conjectural identification of the perverse filtration with a previously introduced filtration, the work of Haiman and Gordon and Stafford gives formulas for the Hilbert scheme series when k=mn+1