277 research outputs found
The New Contact Binary GSC 2414-0797
Original article can be found at: http://www.konkoly.hu/ibvs/GSC 2414-0797 has a contact binary star type light curve, a 0.4 magnitude brightness variation with a period 0.3406 days.Peer reviewe
Near-infrared colors of minor planets recovered from VISTA - VHS survey (MOVIS)
The Sloan Digital Sky Survey (SDSS) and Wide-field Infrared Survey Explorer
(WISE) provide information about the surface composition of about 100,000 minor
planets. The resulting visible colors and albedos enabled us to group them in
several major classes, which are a simplified view of the diversity shown by
the few existing spectra. We performed a serendipitous search in VISTA-VHS
observations using a pipeline developed to retrieve and process the data that
corresponds to solar system objects (SSo). The colors and the magnitudes of the
minor planets observed by the VISTA survey are compiled into three catalogs
that are available online: the detections catalog (MOVIS-D), the magnitudes
catalog (MOVIS-M), and the colors catalog (MOVIS-C). They were built using the
third data release of the survey (VISTA VHS-DR3). A total of 39,947 objects
were detected, including 52 NEAs, 325 Mars Crossers, 515 Hungaria asteroids,
38,428 main-belt asteroids, 146 Cybele asteroids, 147 Hilda asteroids, 270
Trojans, 13 comets, 12 Kuiper Belt objects and Neptune with its four
satellites. The colors found for asteroids with known spectral properties
reveal well-defined patterns corresponding to different mineralogies. The
distributions of MOVIS-C data in color-color plots shows clusters identified
with different taxonomic types. All the diagrams that use (Y-J) color separate
the spectral classes more effectively than the (J-H) and (H-Ks) plots used
until now: even for large color errors (<0.1), the plots (Y-J) vs (Y-Ks) and
(Y-J) vs (J-Ks) provide the separation between S-complex and C-complex. The end
members A, D, R, and V-types occupy well-defined regions.Comment: 19 pages, 16 figure
Discovery of three z>6.5 quasars in the VISTA Kilo-degree Infrared Galaxy (VIKING) survey
Studying quasars at the highest redshifts can constrain models of galaxy and
black hole formation, and it also probes the intergalactic medium in the early
universe. Optical surveys have to date discovered more than 60 quasars up to
z~6.4, a limit set by the use of the z-band and CCD detectors. Only one z>6.4
quasar has been discovered, namely the z=7.08 quasar ULAS J1120+0641, using
near-infrared imaging. Here we report the discovery of three new z>6.4 quasars
in 332 square degrees of the Visible and Infrared Survey Telescope for
Astronomy Kilo-degree Infrared Galaxy (VIKING) survey, thus extending the
number from 1 to 4. The newly discovered quasars have redshifts of z=6.60,
6.75, and 6.89. The absolute magnitudes are between -26.0 and -25.5, 0.6-1.1
mag fainter than ULAS J1120+0641. Near-infrared spectroscopy revealed the MgII
emission line in all three objects. The quasars are powered by black holes with
masses of ~(1-2)x10^9 M_sun. In our probed redshift range of 6.44<z<7.44 we can
set a lower limit on the space density of supermassive black holes of
\rho(M_BH>10^9 M_sun) > 1.1x10^(-9) Mpc^(-3). The discovery of three quasars in
our survey area is consistent with the z=6 quasar luminosity function when
extrapolated to z~7. We do not find evidence for a steeper decline in the space
density of quasars with increasing redshift from z=6 to z=7.Comment: 14 pages, 9 figures. Published in Ap
Distant ULIRGs in the SWIRE Survey
Covering ~49 square degrees in 6 separate fields, the Spitzer Wide-area InfraRed Extragalactic (SWIRE) Legacy survey has the largest area among Spitzer’s “wedding cake” suite of extragalactic surveys. SWIRE is thus optimized for studies of large scale structure, population studies requiring excellent statistics, and searches for rare objects. We discuss the search for high redshift ultraluminous infrared galaxies (ULIRGs) with SWIRE. We have selected complete samples of F_(24μm) > 200 μJy, optically faint, candidate high redshift (z>1) ULIRGs, based on their mid-infrared spectral energy distributions (SEDs). These can be broadly categorized as star formation (SF)-dominated, based on the presence of a clear stellar peak at rest frame 1.6μm redshifted into the IRAC bands, or AGN-dominated if the SED rises featureless into the mid-infrared. AGN-dominated galaxies strongly dominate at the brightest 24μm fluxes, while SF-dominated objects rise rapidly in frequency as F_(24) drops, dominating the sample below 0.5 mJy. We derive photometric redshifts and luminosities for SFdominated objects sampling the z~1.2-3 range. Luminosity functions are being derived and compared with submm-selected samples at similar redshifts. The clustering, millimeter and IR spectral properties of the samples have also been investigated
Mid-infrared sources in the ELAIS Deep X-ray Survey
We present a cross‐correlation of the European Large Area Infrared Space Observatory (ISO) survey (ELAIS) with the ELAIS Deep X‐ray Survey of the N1 and N2 fields. There are seven Chandra point sources with matches in the ELAIS Final Analysis 15‐μm catalogue, out of a total of 28 extragalactic ISO sources present in the Chandra fields. Five of these are consistent with active galactic nuclei (AGN) giving an AGN fraction of ∼19 per cent in the 15‐μm flux range 0.8–6 mJy. We have co‐added the hard X‐ray fluxes of the individually undetected ISO sources and find a low significance detection consistent with star formation in the remaining population. We combine our point source cross‐correlation fraction with the XMM–Newton observations of the Lockman Hole and Chandra observations of the Hubble Deep Field North to constrain source count models of the mid‐infrared galaxy population. The low dust‐enshrouded AGN fraction in ELAIS implied by the number of cross‐identifications between the ELAIS mid‐infrared sample and the Chandra point sources is encouraging for the use of mid‐infrared surveys to constrain the cosmic star formation history, provided there are not further large undetected populations of Compton‐thick AGN
The ELAIS Deep X-ray Survey
We present initial follow-up results of the ELAIS Deep X-ray Survey which is
being undertaken with the Chandra and XMM-Newton Observatories. 235 X-ray
sources are detected in our two 75 ks ACIS-I observations in the well-studied
ELAIS N1 and N2 areas. 90% of the X-ray sources are identified optically to
R=26 with a median magnitude of R=24. We show that objects which are unresolved
optically (i.e. quasars) follow a correlation between their optical and X-ray
fluxes, whereas galaxies do not. We also find that the quasars with fainter
optical counterparts have harder X-ray spectra, consistent with absorption at
both wavebands. Initial spectroscopic follow-up has revealed a large fraction
of high-luminosity Type 2 quasars. The prospects for studying the evolution of
the host galaxies of X-ray selected Type 2 AGN are considered.Comment: 9 pages, 5 figures, To appear in Proceedings of XXI Moriond
Conference: "Galaxy Clusters and the High Redshift Universe Observed in
X-rays", edited by D. Neumann, F.Durret, & J. Tran Thanh Va
The ELAIS deep X-ray survey - I. Chandra source catalogue and first results
We present an analysis of two deep (75 ks) Chandra observations of the European Large Area Infrared Space Observatory (ISO) Survey (ELAIS) fields N1 and N2 as the first results from the ELAIS deep X-ray survey. This survey is being conducted in well-studied regions with extensive multiwavelength coverage. Here we present the Chandra source catalogues along with an analysis of source counts, hardness ratios and optical classifications. A total of 233 X-ray point sources are detected in addition to two soft extended sources, which are found to be associated with galaxy clusters. An overdensity of sources is found in N1 with 30 per cent more sources than N2, which we attribute to large-scale structure. A similar variance is seen between other deep Chandra surveys. The source count statistics reveal an increasing fraction of hard sources at fainter fluxes. The number of galaxy-like counterparts also increases dramatically towards fainter fluxes, consistent with the emergence of a large population of obscured sources
Angular clustering of galaxies at 3.6 microns from the Spitzer Wide-area Infrared Extragalactic (SWIRE) Survey
We present the first analysis of large-scale clustering from the Spitzer Wide-area Infrared Extragalactic legacy survey (SWIRE). We compute the angular correlation function of galaxies selected to have 3.6 m fluxes brighter than 32 Jy in three fields totaling 2 deg2 in area. In each field we detect clustering with a high level of significance. The amplitude and slope of the correlation function is consistent between the three fields and is modeled as w() ¼ A1 with A ¼ (0:6 0:3) ; 10 3; ¼ 2:03 0:10. With a fixed slope of ¼ 1:8, we obtain an amplitude of A ¼ (1:7 0:1) ; 10 3. Assuming an equivalent depth of K 18:7 mag we find that our errors are smaller but our results are consistent with existing clustering measurements in K-band surveys and with stable clustering models. We estimate our median redshift z ’ 0:75, and this allows us to obtain an estimate of the three-dimensional correlation function (r), for which we find r0 ¼ 4:4 0:1 h 1 Mpc
Clustering of galaxies at 3.6 microns in the Spitzer Wide-area Infrared Extragalactic legacy survey
We investigate the clustering of galaxies selected in the 3.6 micron band of
the Spitzer Wide-area Infrared Extragalactic (SWIRE) legacy survey. The angular
two-point correlation function is calculated for eleven samples with flux
limits of S_3.6 > 4-400 mujy, over an 8 square degree field. The angular
clustering strength is measured at >5-sigma significance at all flux limits,
with amplitudes of A=(0.49-29)\times10^{-3} at one degree, for a power-law
model, A\theta^{-0.8}. We estimate the redshift distributions of the samples
using phenomological models, simulations and photometric redshifts, and so
derive the spatial correlation lengths. We compare our results with the GalICS
(Galaxies In Cosmological Simulations) models of galaxy evolution and with
parameterized models of clustering evolution. The GalICS simulations are
consistent with our angular correlation functions, but fail to match the
spatial clustering inferred from the phenomological models or the photometric
redshifts. We find that the uncertainties in the redshift distributions of our
samples dominate the statistical errors in our estimates of the spatial
clustering. At low redshifts (median z<0.5) the comoving correlation length is
approximately constant, r_0=6.1\pm0.5h^{-1} Mpc, and then decreases with
increasing redshift to a value of 2.9\pm0.3h^{-1} Mpc for the faintest sample,
for which the median redshift is z=1. We suggest that this trend can be
attributed to a decrease in the average galaxy and halo mass in the fainter
flux-limited samples, corresponding to changes in the relative numbers of
early- and late-type galaxies. However, we cannot rule out strong evolution of
the correlation length over 0.5<z<1.Comment: 14 pages, 9 (colour) figures. Published in MNRA
- …