2,443 research outputs found

    Results of unrelated cord blood transplant in patients with bone marrow failure syndromes

    Get PDF

    Comparison of unrelated cord blood and bone marrow transplants in adults with acute leukemia

    Get PDF

    Collective patterns arising out of spatio-temporal chaos

    Full text link
    We present a simple mathematical model in which a time averaged pattern emerges out of spatio-temporal chaos as a result of the collective action of chaotic fluctuations. Our evolution equation possesses spatial translational symmetry under a periodic boundary condition. Thus the spatial inhomogeneity of the statistical state arises through a spontaneous symmetry breaking. The transition from a state of homogeneous spatio-temporal chaos to one exhibiting spatial order is explained by introducing a collective viscosity which relates the averaged pattern with a correlation of the fluctuations.Comment: 11 pages (Revtex) + 5 figures (postscript

    An overview of COVID-19 infection in dental practices - a questionnaire survey

    Get PDF
    Dental nurses and practitioners are at high risk of exposure to COVID-19 due to physical proximity and exposure to body fluids during treatment. Dental practices have implemented multiple protective protocols to decrease COVID-19 transmission; however, it is difficult to evaluate how effective these measures are, as there is limited data on COVID-19 in dental practices. To evaluate COVID-19 infection rates among dentists, dental staff, and patients in different countries through an online survey, with a primary focus on South Africa (SA). Cross-sectional online survey. One hundred fifty-four participants from 52 countries answered the survey, 48.6% (n=561) from SA. COVID-19 infections were reported in 18.2% (n=210) of dental practices. Only 1.1% regarded the practice as the source of infection for dentists and staff who got infected. In total, 13.9% (n=160) treated COVID-19 patients. SA presented a higher infection rate (19% vs 13%, p=0.04) and more frequent treatment of COVID-19 patients than the other countries combined (17% vs 11%, p=0.006). These findings support the need to maintain strict infection control measures to decrease transmission of SARSCoV-2 during the delivery of oral care

    Mechanistic machine learning: how data assimilation leverages physiologic knowledge using Bayesian inference to forecast the future, infer the present, and phenotype

    Get PDF
    We introduce data assimilation as a computational method that uses machine learning to combine data with human knowledge in the form of mechanistic models in order to forecast future states, to impute missing data from the past by smoothing, and to infer measurable and unmeasurable quantities that represent clinically and scientifically important phenotypes. We demonstrate the advantages it affords in the context of type 2 diabetes by showing how data assimilation can be used to forecast future glucose values, to impute previously missing glucose values, and to infer type 2 diabetes phenotypes. At the heart of data assimilation is the mechanistic model, here an endocrine model. Such models can vary in complexity, contain testable hypotheses about important mechanics that govern the system (eg, nutrition’s effect on glucose), and, as such, constrain the model space, allowing for accurate estimation using very little data

    Viewing the efficiency of chaos control

    Full text link
    This paper aims to cast some new light on controlling chaos using the OGY- and the Zero-Spectral-Radius methods. In deriving those methods we use a generalized procedure differing from the usual ones. This procedure allows us to conveniently treat maps to be controlled bringing the orbit to both various saddles and to sources with both real and complex eigenvalues. We demonstrate the procedure and the subsequent control on a variety of maps. We evaluate the control by examining the basins of attraction of the relevant controlled systems graphically and in some cases analytically

    Prenatal factors contribute to the emergence of kwoshiorkor or marasmus in severe undernutrition: evidence for the predictive adaptation model

    Get PDF
    Severe acute malnutrition in childhood manifests as oedematous (kwashiorkor, marasmic kwashiorkor) and non-oedematous (marasmus) syndromes with very different prognoses. Kwashiorkor differs from marasmus in the patterns of protein, amino acid and lipid metabolism when patients are acutely ill as well as after rehabilitation to ideal weight for height. Metabolic patterns among marasmic patients define them as metabolically thrifty, while kwashiorkor patients function as metabolically profligate. Such differences might underlie syndromic presentation and prognosis. However, no fundamental explanation exists for these differences in metabolism, nor clinical pictures, given similar exposures to undernutrition. We hypothesized that different developmental trajectories underlie these clinical-metabolic phenotypes: if so this would be strong evidence in support of predictive adaptation model of developmental plasticity

    Stochastic synchronization in globally coupled phase oscillators

    Full text link
    Cooperative effects of periodic force and noise in globally Cooperative effects of periodic force and noise in globally coupled systems are studied using a nonlinear diffusion equation for the number density. The amplitude of the order parameter oscillation is enhanced in an intermediate range of noise strength for a globally coupled bistable system, and the order parameter oscillation is entrained to the external periodic force in an intermediate range of noise strength. These enhancement phenomena of the response of the order parameter in the deterministic equations are interpreted as stochastic resonance and stochastic synchronization in globally coupled systems.Comment: 5 figure
    • 

    corecore