88 research outputs found
Residual erythropoiesis protects against myocardial hemosiderosis in transfusion-dependent thalassemia by lowering labile plasma iron via transient generation of apotransferrin
Cardiosiderosis is a leading cause of mortality in transfusion-dependent thalassemias. Plasma non-transferrin-bound iron and its redox-active component, labile plasma iron, are key sources of iron loading in cardiosiderosis. Risk factors were identified in 73 patients with or without cardiosiderosis. Soluble transferrin receptor-1 levels were significantly lower in patients with cardiosiderosis (odds ratio 21). This risk increased when transfusion-iron loading rates exceeded the erythroid transferrin uptake rate (derived from soluble transferrin receptor-1) by >0.21mg/kg/d (odds ratio 48). Labile plasma iron was >3-fold higher where this uptake rate threshold was exceeded, but non-transferrin-bound iron and transferrin saturation were comparable. Cardiosiderosis risk was also decreased in patients with low liver iron, ferritin and labile plasma iron, or high bilirubin, reticulocyte counts or hepcidin. We hypothesized that high erythroid transferrin uptake rate decreases cardiosiderosis through increased erythroid re-generation of apotransferrin. To test this, iron uptake and intracellular reactive oxygen species were examined in HL-1 cardiomyocytes under conditions modelling transferrin effects on non-transferrin-bound iron speciation with ferric citrate. Intracellular iron and reactive oxygen species increased with ferric citrate concentrations especially where iron-to-citrate ratios exceeded 1:100, i.e. conditions favoring kinetically labile monoferric rather than oligomer species. Excess iron-binding equivalents of apotransferrin inhibited iron uptake, decreased intracellular reactive oxygen species and labile plasma iron, under conditions favoring monoferric species. In conclusion, high transferrin iron utilisation, relative to the transfusion-iron load rate, decreases the cardiosiderotic risk. A putative mechanism is the transient re-generation of apotransferrin by an active erythron, rapidly binding labile plasma iron-detectable ferric monocitrate species
Outcome predictors for maternal red blood cell alloimmunisation with anti-K and anti-D managed with intrauterine blood transfusion
Red blood cell (RBC) alloimmunisation with anti-D and anti-K comprise the majority of cases of fetal haemolytic disease requiring intrauterine red cell transfusion (IUT). Few studies have investigated which haematological parameters can predict adverse fetal or neonatal outcomes. The aim of the present study was to identify predictors of adverse outcome, including preterm birth, intrauterine fetal demise (IUFD), neonatal death (NND) and/or neonatal transfusion. We reviewed the records of all pregnancies alloimmunised with anti-K and anti-D, requiring IUT over 27 years at a quaternary fetal centre. We reviewed data for 128 pregnancies in 116 women undergoing 425 IUTs. The median gestational age (GA) at first IUT was significantly earlier for anti-K than for anti-D (24·3 vs. 28·7 weeks, P = 0·004). Women with anti-K required more IUTs than women with anti-D (3·84 vs. 3·12 mean IUTs, P = 0·036) and the fetal haemoglobin (Hb) at first IUT was significantly lower (51.0 vs. 70.5 g/l, P = 0·001). The mean estimated daily decrease in Hb did not differ between the two groups. A greater number of IUTs and a slower daily decrease in Hb (g/l/day) between first and second IUTs were predictive of a longer period in utero. Earlier GA at first IUT and a shorter interval from the first IUT until delivery predicted IUFD/NND. Earlier GA and lower Hb at first IUT significantly predicted need for phototherapy and/or blood product use in the neonate. In the anti-K group, a greater number of IUTs was required in women with a higher titre. Furthermore, the higher the titre, the earlier the GA at which an IUT was required in both groups. The rate of fall in fetal Hb between IUTs decreased, as the number of transfusions increased. Our present study identified pregnancies at considerable risk of an unfavourable outcome with anti-D and anti-K RBC alloimmunisation. Identifying such patients can guide pregnancy management, facilitates patient counselling, and can optimise resource use. Prospective studies can also incorporate these characteristics, in addition to laboratory markers, to further identify and improve the outcomes of these pregnancies
DNA methylation modifies the association between obesity and survival after breast cancer diagnosis
Mechanisms underlying the poor breast cancer prognosis among obese women are unresolved. DNA methylation levels are linked to obesity and to breast cancer survival. We hypothesized that obesity may work in conjunction with the epigenome to alter prognosis. Using a population-based sample of women diagnosed with first primary breast cancer, we examined modification of the obesity-mortality association by DNA methylation. In-person interviews were conducted approximately 3 months after diagnosis. Weight and height were assessed [to estimate body mass index (BMI)], and blood samples collected. Promoter methylation of 13 breast cancer-related genes was assessed in archived tumor by methylation-specific PCR and Methyl Light. Global methylation in white blood cell DNA was assessed by analysis of long interspersed elements-1 (LINE-1) and with the lumino-metric methylation assay (LUMA). Vital status among 1308 patients (with any methylation biomarker and complete BMI assessment) was determined after approximately 15 years of follow-up (N = 194/441 deaths due to breast cancer-specific/all-cause mortality). We used Cox proportional hazards regression to estimate hazard ratios (HRs) and 95 % confidence intervals (CIs) using two-sided p values of 0.05. Breast cancer-specific mortality was higher among obese (BMI ≥ 30) patients with promoter methylation in APC (HR = 2.47; 95 % CI = 1.43–4.27) and TWIST1 (HR = 4.25; 95 % CI = 1.43–12.70) in breast cancer tissue. Estimates were similar, but less pronounced, for all-cause mortality. Increased all-cause (HR =1.81; 95 % CI = 1.19–2.74) and breast cancer-specific (HR = 2.61; 95 % CI = 1.45–4.69) mortality was observed among obese patients with the lowest LUMA levels. The poor breast cancer prognosis associated with obesity may depend on methylation profiles, which warrants further investigation
Deferasirox (Exjade®) significantly improves cardiac T2* in heavily iron-overloaded patients with β-thalassemia major
Noninvasive measurement of tissue iron levels can be assessed using T2* magnetic resonance imaging (MRI) to identify and monitor patients with iron overload. This study monitored cardiac siderosis using T2* MRI in a cohort of 19 heavily iron-overloaded patients with β-thalassemia major receiving iron chelation therapy with deferasirox over an 18-month period. Overall, deferasirox therapy significantly improved mean ± standard deviation cardiac T2* from a baseline of 17.2 ± 10.8 to 21.5 ± 12.8 ms (+25.0%; P = 0.02). A concomitant reduction in median serum ferritin from a baseline of 5,497 to 4,235 ng/mL (−23.0%; P = 0.001), and mean liver iron concentration from 24.2 ± 9.0 to 17.6 ± 12.9 mg Fe/g dry weight (−27.1%; P = 0.01) was also seen. Improvements were seen in patients with various degrees of cardiac siderosis, including those patients with a baseline cardiac T2* of <10 ms, indicative of high cardiac iron burden. These findings therefore support previous observations that deferasirox is effective in the removal of myocardial iron with concomitant reduction in total body iron
Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan.
BACKGROUND: There is a need to standardise non-invasive measurements of liver iron concentrations (LIC) so clear inferences can be drawn about body iron levels that are associated with hepatic and extra-hepatic complications of iron overload. Since the first demonstration of an inverse relationship between biopsy LIC and liver magnetic resonance (MR) using a proof-of-concept T2* sequence, MR technology has advanced dramatically with a shorter minimum echo-time, closer inter-echo spacing and constant repetition time. These important advances allow more accurate calculation of liver T2* especially in patients with high LIC.
METHODS: Here, we used an optimised liver T2* sequence calibrated against 50 liver biopsy samples on 25 patients with transfusional haemosiderosis using ordinary least squares linear regression, and assessed the method reproducibility in 96 scans over an LIC range up to 42 mg/g dry weight (dw) using Bland-Altman plots. Using mixed model linear regression we compared the new T2*-LIC with R2-LIC (Ferriscan) on 92 scans in 54 patients with transfusional haemosiderosis and examined method agreement using Bland-Altman approach.
RESULTS: Strong linear correlation between ln(T2*) and ln(LIC) led to the calibration equation LIC = 31.94(T2*)-1.014. This yielded LIC values approximately 2.2 times higher than the proof-of-concept T2* method. Comparing this new T2*-LIC with the R2-LIC (Ferriscan) technique in 92 scans, we observed a close relationship between the two methods for values up to 10 mg/g dw, however the method agreement was poor.
CONCLUSIONS: New calibration of T2* against liver biopsy estimates LIC in a reproducible way, correcting the proof-of-concept calibration by 2.2 times. Due to poor agreement, both methods should be used separately to diagnose or rule out liver iron overload in patients with increased ferritin
Associations between Polycyclic Aromatic Hydrocarbon–Related Exposures and p53 Mutations in Breast Tumors
Background: Previous studies have suggested that polycyclic aromatic hydrocarbons (PAHs) may be associated with breast cancer. However, the carcinogenicity of PAHs on the human breast remains unclear. Certain carcinogens may be associated with specific mutation patterns in the p53 tumor suppressor gene, thereby contributing information about disease etiology. Objectives: We hypothesized that associations of PAH-related exposures with breast cancer would differ according to tumor p53 mutation status, effect, type, and number. Methods: We examined this possibility in a population-based case–control study using polytomous logistic regression. As previously reported, 151 p53 mutations among 859 tumors were identified using Surveyor nuclease and confirmed by sequencing. Results: We found that participants with p53 mutations were less likely to be exposed to PAHs (assessed by smoking status in 859 cases and 1,556 controls, grilled/smoked meat intake in 822 cases and 1,475 controls, and PAH–DNA adducts in peripheral mononuclear cells in 487 cases and 941 controls) than participants without p53 mutations. For example, active and passive smoking was associated with p53 mutation–negative [odds ratio (OR) = 1.55; 95% confidence interval (CI), 1.11–2.15] but not p53 mutation–positive (OR = 0.77; 95% CI, 0.43–1.38) cancer (ratio of the ORs = 0.50, p < 0.05). However, frameshift mutations, mutation number, G:C→A:T transitions at CpG sites, and insertions/deletions were consistently elevated among exposed subjects. Conclusions: These findings suggest that PAHs may be associated with specific breast tumor p53 mutation subgroups rather than with overall p53 mutations and may also be related to breast cancer through mechanisms other than p53 mutation
Global DNA Methylation, Measured by the Luminometric Methylation Assay (LUMA), Associates with Postmenopausal Breast Cancer in Non-Obese and Physically Active Women
Introduction: Little is known about how modifiable lifestyle factors interact with the epigenome to influence disease. Body mass index (BMI, weight kg/height m2) and physical activity are associated with postmenopausal breast cancer, but the mechanisms are not well-understood. We hypothesized that BMI or physical activity may modify the association between markers of global DNA methylation and postmenopausal breast cancer risk
Sotatercept, a novel transforming growth factor beta ligand trap, improves anemia in beta-thalassemia: a phase 2, open-label, dose-finding study
\u3b2-thalassemia, a hereditary blood disorder caused by defective synthesis of hemoglobin \u3b2 globin chains, leads to ineffective erythropoiesis and chronic anemia that may require blood transfusions. Sotatercept (ACE-011) acts as a ligand trap to inhibit negative regulators of late-stage erythropoiesis in the transforming growth factor beta superfamily, correcting ineffective erythropoiesis. In this phase II, open-label, dose-finding study, 16 patients with transfusion-dependent \u3b2-thalassemia and 30 patients with non-transfusion-dependent \u3b2 thalassemia were enrolled at 7 centers in 4 countries from November 2012 to November 2014. Patients were treated with sotatercept at 0.1, 0.3, 0.5, 0.75, or 1.0 mg/kg to determine a safe and effective dose. Doses were administered by subcutaneous injection every 3 weeks. Patients were treated for 6422 months. Response was assessed as a 6520% reduction in transfusion burden sustained for 24 weeks in transfusion-dependent \u3b2-thalassemia patients, and an increase in hemoglobin level of 651.0 g/dL sustained for 12 weeks in non-transfusion-dependent \u3b2-thalassemia patients. Sotatercept was well tolerated. After a median treatment duration of 14.4 months (range 0.6-35.9), no severe life-threatening adverse events were observed; 13% of patients reported serious but manageable adverse events. The active dose of sotatercept was 650.3 mg/kg for non-transfusion-dependent \u3b2-thalassemia and 650.5 mg/kg for transfusion-dependent \u3b2-thalassemia patients. Of 30 non-transfusion-dependent \u3b2-thalassemia patients treated with 650.1 mg/kg sotatercept, 18 (60%) achieved a mean hemoglobin increase 651.0 g/dL, and 11 (37%) an increase 651.5 g/dL, sustained for 6512 weeks. Four (100%) transfusion-dependent \u3b2-thalassemia patients treated with 1.0 mg/kg sotatercept achieved a transfusion-burden reduction of 6520%. Sotatercept was effective and well tolerated in patients with \u3b2-thalassemia. Most non-transfusion-dependent \u3b2-thalassemia patients treated with higher doses achieved sustained increases in hemoglobin level. Transfusion-dependent \u3b2-thalassemia patients treated with higher doses of sotatercept achieved notable reductions in transfusion requirement. The registration number at ClinicalTrials.gov was NCT01571635
The efficacy of iron chelator regimes in reducing cardiac and hepatic iron in patients with thalassaemia major: a clinical observational study
<p>Abstract</p> <p>Background</p> <p>Available iron chelation regimes in thalassaemia may achieve different changes in cardiac and hepatic iron as assessed by MR. The aim of this study was to assess the efficacy of four available iron chelator regimes in 232 thalassaemia major patients by assessing the rate of change in repeated measurements of cardiac and hepatic MR.</p> <p>Results</p> <p>For the heart, deferiprone and the combination of deferiprone and deferoxamine significantly reduced cardiac iron at all levels of iron loading. As patients were on deferasirox for a shorter time, a second analysis ("Initial interval analysis") assessing the change between the first two recorded MR results for both cardiac and hepatic iron (minimum interval 12 months) was made. Combination therapy achieved the most rapid fall in cardiac iron load at all levels and deferiprone alone was significantly effective with moderate and mild iron load. In the liver, deferasirox effected significant falls in iron load and combination therapy resulted in the most rapid decline.</p> <p>Conclusion</p> <p>With the knowledge of the efficacy of the different available regimes and the specific iron load in the heart and the liver, appropriate tailoring of chelation therapy should allow clearance of iron. Combination therapy is best in reducing both cardiac and hepatic iron, while monotherapy with deferiprone or deferasirox are effective in the heart and liver respectively. The outcomes of this study may be useful to physicians as to the chelation they should prescribe according to the levels of iron load found in the heart and liver by MR.</p
- …