6 research outputs found

    Temperature dependence of electric resistance and magnetoresistance of pressed nanocomposites of multilayer nanotubes with the structure of nested cones

    Full text link
    Bulk samples of carbon multilayer nanotubes with the structure of nested cones (fishbone structure) suitable for transport measurements, were prepared by compressing under high pressure (~25 kbar) a nanotube precursor synthesized through thermal decomposition of polyethylene catalyzed by nickel. The structure of the initial nanotube material was studied using high-resolution transmission electron microscopy. In the low-temperature range (4.2 - 100 K) the electric resistance of the samples changes according to the law ln \rho ~ (T_0/T)^{1/3}, where T_0 ~ 7 K. The measured magnetoresistance is quadratic in the magnetic field and linear in the reciprocal temperature. The measurements have been interpreted in terms of two-dimensional variable-range hopping conductivity. It is suggested that the space between the inside and outside walls of nanotubes acts as a two-dimensional conducting medium. Estimates suggest a high value of the density of electron states at the Fermi level of about 5 10^{21} eV^{-1} cm^{-3}.Comment: 8 pages, 4 figures. EM photographic images on figures 1a, 1b, 1c attached as JPG files. For correspondence mail to [email protected]
    corecore