1,317 research outputs found
A note on the invariant distribution of a quasi-birth-and-death process
The aim of this paper is to give an explicit formula of the invariant
distribution of a quasi-birth-and-death process in terms of the block entries
of the transition probability matrix using a matrix-valued orthogonal
polynomials approach. We will show that the invariant distribution can be
computed using the squared norms of the corresponding matrix-valued orthogonal
polynomials, no matter if they are or not diagonal matrices. We will give an
example where the squared norms are not diagonal matrices, but nevertheless we
can compute its invariant distribution
Automated design of minimum drag light aircraft fuselages and nacelles
The constrained minimization algorithm of Vanderplaats is applied to the problem of designing minimum drag faired bodies such as fuselages and nacelles. Body drag is computed by a variation of the Hess-Smith code. This variation includes a boundary layer computation. The encased payload provides arbitrary geometric constraints, specified a priori by the designer, below which the fairing cannot shrink. The optimization may include engine cooling air flows entering and exhausting through specific port locations on the body
Birth and death processes and quantum spin chains
This papers underscores the intimate connection between the quantum walks
generated by certain spin chain Hamiltonians and classical birth and death
processes. It is observed that transition amplitudes between single excitation
states of the spin chains have an expression in terms of orthogonal polynomials
which is analogous to the Karlin-McGregor representation formula of the
transition probability functions for classes of birth and death processes. As
an application, we present a characterization of spin systems for which the
probability to return to the point of origin at some time is 1 or almost 1.Comment: 14 page
An Evolutionary Reduction Principle for Mutation Rates at Multiple Loci
A model of mutation rate evolution for multiple loci under arbitrary
selection is analyzed. Results are obtained using techniques from Karlin (1982)
that overcome the weak selection constraints needed for tractability in prior
studies of multilocus event models. A multivariate form of the reduction
principle is found: reduction results at individual loci combine topologically
to produce a surface of mutation rate alterations that are neutral for a new
modifier allele. New mutation rates survive if and only if they fall below this
surface - a generalization of the hyperplane found by Zhivotovsky et al. (1994)
for a multilocus recombination modifier. Increases in mutation rates at some
loci may evolve if compensated for by decreases at other loci. The strength of
selection on the modifier scales in proportion to the number of germline cell
divisions, and increases with the number of loci affected. Loci that do not
make a difference to marginal fitnesses at equilibrium are not subject to the
reduction principle, and under fine tuning of mutation rates would be expected
to have higher mutation rates than loci in mutation-selection balance. Other
results include the nonexistence of 'viability analogous, Hardy-Weinberg'
modifier polymorphisms under multiplicative mutation, and the sufficiency of
average transmission rates to encapsulate the effect of modifier polymorphisms
on the transmission of loci under selection. A conjecture is offered regarding
situations, like recombination in the presence of mutation, that exhibit
departures from the reduction principle. Constraints for tractability are:
tight linkage of all loci, initial fixation at the modifier locus, and mutation
distributions comprising transition probabilities of reversible Markov chains.Comment: v3: Final corrections. v2: Revised title, reworked and expanded
introductory and discussion sections, added corollaries, new results on
modifier polymorphisms, minor corrections. 49 pages, 64 reference
Random trees between two walls: Exact partition function
We derive the exact partition function for a discrete model of random trees
embedded in a one-dimensional space. These trees have vertices labeled by
integers representing their position in the target space, with the SOS
constraint that adjacent vertices have labels differing by +1 or -1. A
non-trivial partition function is obtained whenever the target space is bounded
by walls. We concentrate on the two cases where the target space is (i) the
half-line bounded by a wall at the origin or (ii) a segment bounded by two
walls at a finite distance. The general solution has a soliton-like structure
involving elliptic functions. We derive the corresponding continuum scaling
limit which takes the remarkable form of the Weierstrass p-function with
constrained periods. These results are used to analyze the probability for an
evolving population spreading in one dimension to attain the boundary of a
given domain with the geometry of the target (i) or (ii). They also translate,
via suitable bijections, into generating functions for bounded planar graphs.Comment: 25 pages, 7 figures, tex, harvmac, epsf; accepted version; main
modifications in Sect. 5-6 and conclusio
Transition probabilities for general birth-death processes with applications in ecology, genetics, and evolution
A birth-death process is a continuous-time Markov chain that counts the
number of particles in a system over time. In the general process with
current particles, a new particle is born with instantaneous rate
and a particle dies with instantaneous rate . Currently no robust and
efficient method exists to evaluate the finite-time transition probabilities in
a general birth-death process with arbitrary birth and death rates. In this
paper, we first revisit the theory of continued fractions to obtain expressions
for the Laplace transforms of these transition probabilities and make explicit
an important derivation connecting transition probabilities and continued
fractions. We then develop an efficient algorithm for computing these
probabilities that analyzes the error associated with approximations in the
method. We demonstrate that this error-controlled method agrees with known
solutions and outperforms previous approaches to computing these probabilities.
Finally, we apply our novel method to several important problems in ecology,
evolution, and genetics
Distribution of the time at which N vicious walkers reach their maximal height
We study the extreme statistics of N non-intersecting Brownian motions
(vicious walkers) over a unit time interval in one dimension. Using
path-integral techniques we compute exactly the joint distribution of the
maximum M and of the time \tau_M at which this maximum is reached. We focus in
particular on non-intersecting Brownian bridges ("watermelons without wall")
and non-intersecting Brownian excursions ("watermelons with a wall"). We
discuss in detail the relationships between such vicious walkers models in
watermelons configurations and stochastic growth models in curved geometry on
the one hand and the directed polymer in a disordered medium (DPRM) with one
free end-point on the other hand. We also check our results using numerical
simulations of Dyson's Brownian motion and confront them with numerical
simulations of the Polynuclear Growth Model (PNG) and of a model of DPRM on a
discrete lattice. Some of the results presented here were announced in a recent
letter [J. Rambeau and G. Schehr, Europhys. Lett. 91, 60006 (2010)].Comment: 30 pages, 12 figure
Revenue Management of Reusable Resources with Advanced Reservations
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137568/1/poms12672_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137568/2/poms12672.pd
Functional central limit theorems for vicious walkers
We consider the diffusion scaling limit of the vicious walker model that is a
system of nonintersecting random walks. We prove a functional central limit
theorem for the model and derive two types of nonintersecting Brownian motions,
in which the nonintersecting condition is imposed in a finite time interval
for the first type and in an infinite time interval for
the second type, respectively. The limit process of the first type is a
temporally inhomogeneous diffusion, and that of the second type is a temporally
homogeneous diffusion that is identified with a Dyson's model of Brownian
motions studied in the random matrix theory. We show that these two types of
processes are related to each other by a multi-dimensional generalization of
Imhof's relation, whose original form relates the Brownian meander and the
three-dimensional Bessel process. We also study the vicious walkers with wall
restriction and prove a functional central limit theorem in the diffusion
scaling limit.Comment: AMS-LaTeX, 20 pages, 2 figures, v6: minor corrections made for
publicatio
Non-intersecting squared Bessel paths: critical time and double scaling limit
We consider the double scaling limit for a model of non-intersecting
squared Bessel processes in the confluent case: all paths start at time
at the same positive value , remain positive, and are conditioned to end
at time at . After appropriate rescaling, the paths fill a region in
the --plane as that intersects the hard edge at at a
critical time . In a previous paper (arXiv:0712.1333), the scaling
limits for the positions of the paths at time were shown to be
the usual scaling limits from random matrix theory. Here, we describe the limit
as of the correlation kernel at critical time and in the
double scaling regime. We derive an integral representation for the limit
kernel which bears some connections with the Pearcey kernel. The analysis is
based on the study of a matrix valued Riemann-Hilbert problem by
the Deift-Zhou steepest descent method. The main ingredient is the construction
of a local parametrix at the origin, out of the solutions of a particular
third-order linear differential equation, and its matching with a global
parametrix.Comment: 53 pages, 15 figure
- …