14 research outputs found

    Modelling of epitaxial film growth with a Ehrlich-Schwoebel barrier dependent on the step height

    Full text link
    The formation of mounded surfaces in epitaxial growth is attributed to the presence of barriers against interlayer diffusion in the terrace edges, known as Ehrlich-Schwoebel (ES) barriers. We investigate a model for epitaxial growth using a ES barrier explicitly dependent on the step height. Our model has an intrinsic topological step barrier even in the absence of an explicit ES barrier. We show that mounded morphologies can be obtained even for a small barrier while a self-affine growth, consistent with the Villain-Lai-Das Sarma equation, is observed in absence of an explicit step barrier. The mounded surfaces are described by a super-roughness dynamical scaling characterized by locally smooth (faceted) surfaces and a global roughness exponent α>1\alpha>1. The thin film limit is featured by surfaces with self-assembled three-dimensional structures having an aspect ratio (height/width) that may increase or decrease with temperature depending on the strength of step barrier.Comment: To appear in J. Phys. Cond. Matter; 3 movies as supplementary materia

    MHD flow of an elastico-viscous fluid under periodic body acceleration

    No full text
    Magnetohydrodynamic (MHD) flow of blood has been studied under the influence of body acceleration. With the help of Laplace and finite Hankel transforms, an exact solution is obtained for the unsteady flow of blood as an electrical conducting, incompressible and elastico-viscous fluid in the presence of a magnetic field acting along the radius of the pipe. Analytical expressions for axial velocity, fluid acceleration and flow rate has been obtained
    corecore