5 research outputs found
Flavour Universal Dynamical Electroweak Symmetry Breaking
The top condensate see-saw mechanism of Dobrescu and Hill allows electroweak
symmetry to be broken while deferring the problem of flavour to an electroweak
singlet, massive sector. We provide an extended version of the singlet sector
that naturally accommodates realistic masses for all the standard model
fermions, which play an equal role in breaking electroweak symmetry. The models
result in a relatively light composite Higgs sector with masses typically in
the range of (400-700)~GeV. In more complete models the dynamics will
presumably be driven by a broken gauged family or flavour symmetry group. As an
example of the higher scale dynamics a fully dynamical model of the quark
sector with a GIM mechanism is presented, based on an earlier top condensation
model of King using broken family gauge symmetry interactions (that model was
itself based on a technicolour model of Georgi). The crucial extra ingredient
is a reinterpretation of the condensates that form when several gauge groups
become strong close to the same scale. A related technicolour model of Randall
which naturally includes the leptons too may also be adapted to this scenario.
We discuss the low energy constraints on the massive gauge bosons and scalars
of these models as well as their phenomenology at the TeV scale.Comment: 22 pages, 3 fig
DETERMINATION OF THE ELECTROWEAK CHIRAL-LAGRANGIAN PARAMETERS AT THE LHC
In this work we report on the results obtained in a detailed and systematical
study of the possibility to measure the parameters appearing in the electroweak
chiral lagrangian. The main novelty of our approach is that we do not use the
Equivalence Theorem and therefore we work explicitly with all the gauge boson
degrees of freedom.Comment: 59 pages,latex, figures available on reques