419 research outputs found
A novel technique for measuring the reflection coefficient of sound absorbing materials
A new method to measure the acoustic behaviour of sound absorbing material in an impedance tube is presented. The method makes use of a novel particle velocity sensor, the microflown, and a microphone. The so-called p·u method is compared to three other methods of which the two microphone technique is well known. It is shown that the combination of a microphone and a microflown provides direct information on the acoustic impedance, the sound intensity and the sound energy density. The experimental results are compared to the results obtained with the conventional impedance tube measurements. To be able to repeat the measurements in a reliable way a well described test sample with a quarter-wave resonator is used. Furthermore it is shown that the viscothermal effects on the wave propagation are important, i.e. for the quarter-wave resonator and to a lesser extent for the impedance tube itself
Modelling of the diffusion of carbon dioxide in polyimide matrices by computer simulation
Computer aided molecular modelling is used to visualize the motion of CO2 gas molecules inside a polyimide polymer matrix. The polymers simulated are two 6FDA-bases polyimides, 6FDA-4PDA and 6FDA-44ODA. These polymers have also been synthesized in our laboratory, and thus the simulated properties could directly be compared with âreal-worldâ data. The simulation experiments have been performed using the GROMOS1 package. The polymer boxes were created using the soft-core method, with short (11 segments) chains. This results in highly relaxed and totally amorphous polyimide matrices. The motion of randomly placed CO2 molecules in the boxes during molecular dynamics runs was followed, revealing three types of motion: jumping, continuous- and trapped motion. The calculated diffusivities are unrealistic, but possible shortcomings in our model are given
Proton irradiation induced GaAs solar cell performance degradation simulations using a physics-based model
In this study a recently developed physics-based model to describe the performance degradation of GaAs solar cells upon electron irradiation is applied to analyze the effects of proton irradiation. For this purpose GaAs solar cells with significantly different architectures are subjected to a range of proton irradiation fluences up to 5Ă1012 H+/cm2. The resulting JâV and EQE characteristics of the cells are measured and compared with the simulations from the model. The model requires individual degradation constants for the SRH lifetimes and the surface recombination velocities as an input. In this study these constants were obtained from the recently determined associated constants for electron irradiation using the particles non-ionizing energy loss (NIEL) values for conversion. The good fit between the simulated and experimentally obtained results demonstrate that this is a valid approach. Moreover, it suggests that the physics based model allows for a good prediction of GaAs cell performance under particle irradiation of any kind independent of the particular cell architecture as long as the layer thicknesses and doping levels are known. In addition the applied proton irradiation levels in this study were not found to induce additional Cu-related degradation in the investigated thin-film cells, indicating that the use of copper foil as a convenient carrier and rear contact does not require reconsideration for thin-film cells intended for space applications
Increased Performance of Thin-film GaAs Solar Cells with Improved Rear Interface Reflectivity
The highest efficiencies in single-junction solar cells are obtained with devices based on GaAs. As this material is reaching the limit in material quality, the optimization of the design of the cell becomes more important. In this study we implement a patterning technique to the bottom contact layer of thin-film GaAs solar cells that increases the reflectance of photons to the active layers. Both shallow junction and deep junction devices were evaluated, and for deep junction cells, both the short circuit current and the open circuit voltage increase with the reflectance. The radiative saturation current density also decreases, indicating increased photon recycling. Detailed model simulations are performed to further evaluate the mechanisms leading to the improved performance of the deep junction design. Based on the same model, the possibilities for further improvements utilizing the deep junction are also identified
Functional Restoration of CFTR Nonsense Mutations in Intestinal Organoids
Background: Pharmacotherapies for people with cystic fibrosis (pwCF) who have premature termination codons (PTCs) in the cystic fibrosis transmembrane conductance regulator (CFTR) gene are under development. Thus far, clinical studies focused on compounds that induce translational readthrough (RT) at the mRNA PTC location. Recent studies using primary airway cells showed that PTC functional restoration can be achieved through combining compounds with multiple mode-of-actions. Here, we assessed induction of CFTR function in PTC-containing intestinal organoids using compounds targeting RT, nonsense mRNA mediated decay (NMD) and CFTR protein modulation. Methods: Rescue of PTC CFTR protein was assessed by forskolin-induced swelling of 12 intestinal organoid cultures carrying distinct PTC mutations. Effects of compounds on mRNA CFTR level was assessed by RT-qPCRs. Results: Whilst response varied between donors, significant rescue of CFTR function was achieved for most donors with the quintuple combination of a commercially available pharmacological equivalent of the RT compound (ELX-02-disulfate or ELX-02ds), NMD inhibitor SMG1i, correctors VX-445 and VX-661 and potentiator VX-770. The quintuple combination of pharmacotherapies reached swelling quantities higher than the mean swelling of three VX-809/VX-770-rescued F508del/F508del organoid cultures, indicating level of rescue is of clinical relevance as VX-770/VX-809-mediated F508del/F508del rescue in organoids correlate with substantial improvement of clinical outcome. Conclusions: Whilst variation in efficacy was observed between genotypes as well as within genotypes, the data suggests that strong pharmacological rescue of PTC requires a combination of drugs that target RT, NMD and protein function
Osteoblasts secrete miRNA-containing extracellular vesicles that enhance expansion of human umbilical cord blood cells
Osteolineage cells represent one of the critical bone marrow niche components that support maintenance of hematopoietic stem and progenitor cells (HSPCs). Recent studies demonstrate that extracellular vesicles (EVs) regulate stem cell development via horizontal transfer of bioactive cargo, including microRNAs (miRNAs). Using next-generation sequencing we show that human osteoblast-derived EVs contain highly abundant miRNAs specifically enriched in EVs, including critical regulators of hematopoietic proliferation (e.g., miR-29a). EV treatment of human umbilical cord blood-derived CD34 + HSPCs alters the expression of candidate miRNA targets, such as HBP1, BCL2 and PTEN. Furthermore, EVs enhance proliferation of CD34 + cells and their immature subsets in growth factor-driven ex vivo expansion cultures. Importantly, EV-expanded cells retain their differentiation capacity in vitro and successfully engraft in vivo. These discoveries reveal a novel osteoblast-derived EV-mediated mechanism for regulation of HSPC proliferation and warrant consideration of EV-miRNAs for the development of expansion strategies to treat hematological disorders
Identification of osteolineage cell-derived extracellular vesicle cargo implicated in hematopoietic support
Osteolineage cell-derived extracellular vesicles (EVs) play a regulatory role in hematopoiesis and have been shown to promote the ex vivo expansion of human hematopoietic stem and progenitor cells (HSPCs). Here, we demonstrate that EVs from different human osteolineage sources do not have the same HSPC expansion promoting potential. Comparison of stimulatory and non-stimulatory osteolineage EVs by next-generation sequencing and mass spectrometry analyses revealed distinct microRNA and protein signatures identifying EV-derived candidate regulators of ex vivo HSPC expansion. Accordingly, the treatment of umbilical cord blood-derived CD34+ HSPCs with stimulatory EVs-altered HSPC transcriptome, including genes with known roles in cell proliferation. An integrative bioinformatics approach, which connects the HSPC gene expression data with the candidate cargo in stimulatory EVs, delineated the potentially targeted biological functions and pathways during hematopoietic cell expansion and development. In conclusion, our study giv
Efficacy and Toxicity of Weekly Carboplatin and Paclitaxel as Induction or Palliative Treatment in Advanced Esophageal Cancer Patients
Many patients have advanced esophageal cancer at diagnosis. However, the most optimal
treatment has not been identified. Therefore, we evaluated a weekly regimen of carboplatin (area under
the curve (AUC)) of 4 and paclitaxel at 100 mg/m2 as an induction or palliative treatment. All patients
with advanced (gastro)esophageal cancer treated with this regimen between 2002â2018 were included.
Exclusion cr
- âŠ