90 research outputs found

    Casimir forces in modulated systems

    Full text link
    For the first time we present analytical results for the contribution of electromagnetic fluctuations into thermodynamic properties of modulated systems, like cholesteric or smectic liquid crystalline films. In the case of small dielectric anisotropy we have derived explicit analytical expressions for the chemical potential of such systems. Two limiting cases were specifically considered: (i) the Van der Waals (VdW) limit, i.e., in the case when the retardation of the electromagnetic interactions can be neglected; and (ii) the Casimir limit, i.e. when the effects of retardation becomes considerable. It was shown that in the Casimir limit, the film chemical potential oscillates with the thickness of the film. This non-monotonic dependence of the chemical potential on the film thickness can lead to step-wise wetting phenomena, surface anchoring reorientation and other important effects. Applications of the results may concern the various systems in soft matter or condensed matter physics with multilayer or modulated structures.Comment: 13 page

    Scaling and Crossover to Tricriticality in Polymer Solutions

    Full text link
    We propose a scaling description of phase separation of polymer solutions. The scaling incorporates three universal limiting regimes: the Ising limit asymptotically close to the critical point of phase separation, the "ideal-gas" limit for the pure-solvent phase, and the tricritical limit for the polymer-rich phase asymptotically close to the theta point. We have also developed a phenomenological crossover theory based on the near-tricritical-point Landau expansion renormalized by fluctuations. This theory validates the proposed scaled representation of experimental data and crossover to tricriticality.Comment: 4 pages, 3 figure

    Dislocation loops in overheated free-standing smectic films

    Full text link
    Static and dynamic phenomena in overheated free-standing smectic-A films are studied using a generalization of de Gennes' theory for a confined presmectic liquid. A static application is to determine the profile of the film meniscus and the meniscus contact angle, the results being compared with those of a recent study employing de Gennes' original theory. The dynamical generalization of the theory is based on on a time-dependent Ginzburg-Landau approach. This is used to compare two modes for layer-thinning transitions in overheated films, namely "uniform thinning" vs. nucleation of dislocation loops. Properties such as the line tension and velocity of a moving dislocation line are evaluated self-consistently by the theory.Comment: 16 pages, 8 figure
    • …
    corecore