46 research outputs found

    The KCNE genes in hypertrophic cardiomyopathy: a candidate gene study

    Get PDF
    The original publication is available at http://www.jnrbm.com/content/10/1/12Includes bibliographyAbstract Background The gene family KCNE1-5, which encode modulating β-subunits of several repolarising K+-ion channels, has been associated with genetic cardiac diseases such as long QT syndrome, atrial fibrillation and Brugada syndrome. The minK peptide, encoded by KCNE1, is attached to the Z-disc of the sarcomere as well as the T-tubules of the sarcolemma. It has been suggested that minK forms part of an "electro-mechanical feed-back" which links cardiomyocyte stretching to changes in ion channel function. We examined whether mutations in KCNE genes were associated with hypertrophic cardiomyopathy (HCM), a genetic disease associated with an improper hypertrophic response. Results The coding regions of KCNE1, KCNE2, KCNE3, KCNE4, and KCNE5 were examined, by direct DNA sequencing, in a cohort of 93 unrelated HCM probands and 188 blood donor controls. Fifteen genetic variants, four previously unknown, were identified in the HCM probands. Eight variants were non-synonymous and one was located in the 3'UTR-region of KCNE4. No disease-causing mutations were found and no significant difference in the frequency of genetic variants was found between HCM probands and controls. Two variants of likely functional significance were found in controls only. Conclusions Mutations in KCNE genes are not a common cause of HCM and polymorphisms in these genes do not seem to be associated with a propensity to develop arrhythmiaPeer Reviewe

    Homogenous Pd-Catalyzed Asymmetric Hydrogenation of Unprotected Indoles: Scope and Mechanistic Studies

    Full text link

    Operation of 4 × 1 optical register as a fast access optical buffer memory

    Full text link

    A crystalline H-bond cluster of hexafluaroisopropanol (HFIP) and piperidine : Structure determination by X ray diffraction

    Full text link
    International audiencePiperidine and 1,1,1-3,3,3 hexafluoro-2-propanol (HFIP) have been co-crystallized and X-ray crystal structure has been explored. Single-crystal X-ray analysis displays the existence of hydrogen bonding aggregates through dimers 1 of the complex (one piperidine/two HFIP) where the heteroatoms form a six-center ring. In this cluster 1, each heteroatom (N, O) is multiple H-bond donor and acceptor. Surprisingly the strongest H-bond of the network is where HFIP acts as an acceptor from the amine. In this complex HFIP adopts a conformation different from that of HFIP aggregates. The supramolecular architecture is also based on discrimination between polar and hydrophobic parts that allows the alignment of molecules and the formation of parallel channels. NMR experiments show that strong interactions between piperidine and HFIP are maintained in solution

    RadioTransNet, le réseau national de radiothérapie oncologique préclinique

    Full text link
    International audienceThe ambition of the RADIOTRANSNET network, launched by the INCa at the end of 2018, is to create a French research consortium dedicated to preclinical radiotherapy to foster scientific and clinical interactions at the interface of radiotherapy and radiobiology, and to identify research priorities dedicated to innovation in radiotherapy. The activities of the network are organized around four major axes that are target definition, normal tissue, combined treatments and dose modelling. Under the supervision of the Scientific Council, headed by a coordinator designated by the SFRO and a co-coordinator designated by the SFPM, three leaders coordinate each axis: a radiation-oncologist, a medical physicist and a biologist, who are responsible for organizing a scientific meeting based on the consensus conference methodology to identify priority issues. The selected themes will be the basis for the establishment of a strategic research agenda and a roadmap to help coordinate national basic and translational research efforts in oncological radiotherapy. This work will be published and will be transmitted to the funding institutions and bodies with the aim of opening dedicated calls to finance the necessary human and technical resources. Structuration of a preclinical research network will allow coordinating the efforts of all the actors in the field and thus promoting innovation in radiotherapy

    A gamma camera count rate saturation correction method for whole-body planar imaging.

    Get PDF
    Whole-body (WB) planar imaging has long been one of the staple methods of dosimetry, and its quantification has been formalized by the MIRD Committee in pamphlet no 16. One of the issues not specifically addressed in the formalism occurs when the count rates reaching the detector are sufficiently high to result in camera count saturation. Camera dead-time effects have been extensively studied, but all of the developed correction methods assume static acquisitions. However, during WB planar (sweep) imaging, a variable amount of imaged activity exists in the detector's field of view as a function of time and therefore the camera saturation is time dependent. A new time-dependent algorithm was developed to correct for dead-time effects during WB planar acquisitions that accounts for relative motion between detector heads and imaged object. Static camera dead-time parameters were acquired by imaging decaying activity in a phantom and obtaining a saturation curve. Using these parameters, an iterative algorithm akin to Newton's method was developed, which takes into account the variable count rate seen by the detector as a function of time. The algorithm was tested on simulated data as well as on a whole-body scan of high activity Samarium-153 in an ellipsoid phantom. A complete set of parameters from unsaturated phantom data necessary for count rate to activity conversion was also obtained, including build-up and attenuation coefficients, in order to convert corrected count rate values to activity. The algorithm proved successful in accounting for motion- and time-dependent saturation effects in both the simulated and measured data and converged to any desired degree of precision. The clearance half-life calculated from the ellipsoid phantom data was calculated to be 45.1 h after dead-time correction and 51.4 h with no correction; the physical decay half-life of Samarium-153 is 46.3 h. Accurate WB planar dosimetry of high activities relies on successfully compensating for camera saturation which takes into account the variable activity in the field of view, i.e. time-dependent dead-time effects. The algorithm presented here accomplishes this task

    Effects of a quaternary bupivacaine derivative on delayed rectifier K(+) currents

    Full text link
    1. Block of hKv1.5 channels by R-bupivacaine has been attributed to the interaction of the charged form of the drug with an intracellular receptor. However, bupivacaine is present as a mixture of neutral and charged forms both extra- and intracellularly. 2. We have studied the effects produced by the R(+) enantiomer of a quaternary bupivacaine derivative, N-methyl-bupivacaine, (RB(+)1C) on hKv1.5 channels stably expressed in Ltk(−) cells using the whole-cell configuration of the patch-clamp technique. 3. When applied from the intracellular side of the membrane, RB(+)1C induced a time- and voltage-dependent block similar to that induced by R-bupivacaine. External application of 50 μM RB(+)1C reduced the current at +60 mV by 24±2% (n=10), but this block displayed neither time- nor voltage-dependence. 4. External RB(+)1C partially relieved block induced by R-bupivacaine (61±2% vs 56±3%, n=4, P<0.05), but it did not relieve block induced by internal RB(+)1C. In addition, it did not induce use-dependent block, but when applied in combination with internal RB(+)1C a use-dependent block that increased with pulse duration was observed. 5. These results indicate that RB(+)1C induces different effects on hKv1.5 channels when applied from the intra or the extracellular side of the membrane, suggesting that the actions of bupivacaine are the resulting of those induced on the external and the internal side of hKv1.5 channels
    corecore