19 research outputs found

    Genetic Relationship between Cocirculating Human Enteroviruses Species C

    Get PDF
    Recombination events between human enteroviruses (HEV) are known to occur frequently and to participate in the evolution of these viruses. In a previous study, we reported the isolation of a panel of viruses belonging to the Human enterovirus species C (HEV-C) that had been cocirculating in a small geographic area of Madagascar in 2002. This panel included type 2 vaccine-derived polioviruses (PV) that had caused several cases of acute flaccid paralysis in humans. Previous partial sequencing of the genome of these HEV-C isolates revealed considerable genetic diversity, mostly due to recombination. In the work presented herein, we carried out a more detailed characterization of the genomes of viruses from this collection. First, we determined the full VP1 sequence of 41 of these isolates of different types. These sequences were compared with those of HEV-C isolates obtained from other countries or in other contexts. The sequences of the Madagascan isolates of a given type formed specific clusters clearly differentiated from those formed by other strains of the same type isolated elsewhere. Second, we sequenced the entire genome of 10 viruses representing most of the lineages present in this panel. All but one of the genomes appeared to be mosaic assemblies of different genomic fragments generated by intra- and intertypic recombination. The location of the breakpoints suggested potential preferred genomic regions for recombination. Our results also suggest that recombination between type HEV-99 and other HEV-C may be quite rare. This first exhaustive genomic analysis of a panel of non-PV HEV-C cocirculating in a small human population highlights the high frequency of inter and intra-typic genetic recombination, constituting a widespread mechanism of genetic plasticity and continually shifting the HEV-C biodiversity

    Possible recombination and gene adaptation exchanges among clinical echovirus strains: crossing the temporal and topological barriers

    No full text
    Six echovirus strains belonging to serotypes echovirus 6, 13, and 30 were investigated in the present work by sequencing of the whole 2C gene and about 560 nt of the 5' part of 3-dimensional genomic region. Four of the 6 echovirus strains were epidemics, whereas 2 were from sporadic cases. The whole procedure was carried out by using nucleotide distance matrices and phylogeny software. The sequences obtained strengthen the observation that recent echovirus isolates differ significantly frorn prototype strains in the downstream regions of the genome and provides further evidence that nonstructural enterovirus genes are ubiquitous and may combine freely adapting genomic sequences that are not restricted from the place of isolates' origin. For diagnostic purposes, particular emphasis is given on the utility of sequencing downstream genes and comparison of them with corresponding genomic regions front enteroviral strains that circulated all over the world. (C) 2007 Elsevier Inc. All rights reserved

    Complete nucleotide sequence analysis of the VP1 genomic region of Echoviruses 6 isolated from sewage in Greece revealed 98% similarity with Echoviruses 6 that were characterized from an aseptic meningitis outbreak 1 year later

    Get PDF
    The molecular characterization of two enterovirus strains (LR51A5 and LR61G3) isolated from the sewage treatment plant unit in Larissa, Greece, in May and June 2006 and the investigation of their relationship with enteroviruses of the same serotype isolated in Greece in 2001 and 2007 were performed by complete VP1 sequence analysis of the isolates. The close phylogenetic relationship and the high nucleotide similarity (98%) led to the conclusion that the virus isolated from sewage in 2006 was associated with that isolated from an aseptic meningitis outbreak 1 year later. Bootscan analysis of the VP1 genomic region revealed that intraserotypic multi-recombination events might have been involved in the evolutionary past history of the LR51A5 and LR61G3 isolates

    Use of mutational pattern in 5 '-NCR and VP1 regions of polioviruses for molecular diagnosis

    No full text
    Polioviruses are members of the enterovirus genus, belonging to the Picornaviridae family. They are the causative agents of poliomyelitis, a paralytic and sometimes fatal disease in humans. The number of poliomyelitis cases caused by wild poliovirus infections has been dramatically reduced by the extensive use of two available vaccines: the inactivated poliovirus vaccine (IPV) and the oral poliovirus vaccine (OPV). Despite the importance of OPV in the reduction of poliomyelitis cases, one of the disadvantages associated with this vaccine is the rare occurrence of vaccine-associated paralytic poliomyelitis (VAPP) in vaccinees or their healthy contacts through the accumulation of mutations and/or recombination in Sabin strains genome. Thirteen clinical isolates originating from healthy vaccinees and VAPP cases were investigated in order to identify genomic modifications in 5' non-coding region (5'-NCR) and VP1 genomic regions. The analysis of samples was conducted by RT-PCR, RFLP, sequencing and bioinformatics analysis. All clinical isolates were characterized as OPV-Iike viruses. Our results showed that analysis of 5'-NCR and VP1 regions of Poliovirus Sabin strains is important in order to identify mutations that increase the neurovirulence conducting to the eventuality of emergence of VAPP cases. (C) 2007 Elsevier Ltd. All rights reserved

    Molecular identification and full genome analysis of an echovirus 7 strain isolated from the environment in Greece

    No full text
    Two enteroviruses from river water and four from sewage treatment plant were isolated in Larissa, Greece, that all shared the same sequence. A full genome analysis was conducted in an attempt to reveal the evolutionary pathways of one of the isolated strains (LR11F7). VP1 nucleotide and phylogenetic analysis revealed that the isolated strain had 78% homology with the echovirus 7 prototype strain Wallace. Full genome analysis revealed that LR11F7 P1 region is related to echoviruses 7 and that P2 and P3 regions are originating from contemporary enteroviruses isolated in South Asia. Two recombination events were shown to be involved into the evolutionary history of LR11F7, the one event concerning 3A, 3B, and 2C, and the other concerning 3D genomic region, both with new types of HEV-B. The contribution of recombination to enterovirus evolution is substantial, giving rise to new genetic lineages with unknown properties

    Growth kinetic analysis of bi-recombinant poliovirus vaccine strains

    No full text
    Attenuated strains of Sabin poliovirus vaccine replicate in the human gut and in rare cases may cause vaccine-associated paralytic poliomyelitis (VAPP). Mutations at specific sites of the genome and recombination between Sabin strains may result in the loss of the attenuated phenotype of OPV (Oral Poliovirus Vaccine) strains and the acquisition of traits characteristic of wild polioviruses, such as increased neurovirulence and loss of temperature sensitivity. In this study, we determined the phenotypic traits such as temperature sensitivity and growth kinetics of eight OPV isolates (six bi-recombinant and two non-recombinant). The growth phenotype of each isolate as well as of Sabin vaccine strains in Hep2 cell line at two different temperatures (37 and 40A degrees C) was evaluated using two different assays, RCT test (Reproductive Capacity at different Temperatures) and one-step growth curve analysis. Moreover, the nucleotide and amino acid positions in the genomes of the isolates that have been identified as being involved in the attenuated and thermo sensitive phenotype of Sabin vaccine strains were investigated. Mutations that result in loss of the attenuated and thermo sensitive phenotype of Sabin vaccine strains were identified in the genomes of all isolates. Both mutations and recombination events correlated well with the reverted phenotypic traits of OPV-derivatives. In the post-eradication era of wild polioviruses, the identification and the characterization (genomic and phenotypic) of vaccine-derived polioviruses become increasingly important in order to prevent cases or even outbreaks of paralytic poliomyelitis caused by neurovirulent strains

    Direct extraction and molecular characterization of enteroviruses genomes from human faecal samples

    No full text
    Routine diagnosis of acute flaccid paralysis (AFP) is still based on classical virological procedures. Several enteroviruses serotypes are not easily isolated in cell cultures system used and routinely more than one passage in cell culture is performed. A total of 54 archived faecal samples were examined. The heterogeneous nature of faecal samples may contribute to variations in the yields of viral nucleic acids with different extraction methods and specimen types. PCR inhibitors are frequently encountered in stool specimens. From the three methods initially compared for extraction of viral RNA, QIAamp Viral RNA Mini Kit was retained as it yielded the highest amount of viral RNA without the interference of RTPCR inhibitors. Evaluation of 54 archived stool specimens by RT-PCR and cell culture resulted in a higher frequency of detection by RT-PCR. With the use of RT-PCR we were able to detect two additional samples otherwise considered negative for enterovirus isolation if only the cell culture standard methodology was employed. RNA extraction with QIAamp Viral RNA Mini Kit coupled with RT-PCR in the 5'NCR (sub-grouping into distinct genetic clusters of all enteroviruses) and VP1 (reliable serotyping by sequencing) is a rapid and sensitive technique of direct poliovirus/non-polio enteroviruses recovery and molecular characterization from human faecal specimens without further passage in cell culture, which may select for genetic variants that may not accurately reflect the virus composition in the original specimen. (C) 2008 Elsevier Ltd. All rights reserved

    Complete genomic characterization of an intertypic Sabin 3/Sabin 2 capsid recombinant

    No full text
    The genetic properties of strain K/2002, isolated from fecal samples of a 7-month-old child who had received his first oral poliovirus vaccine (OPV) dose at the age of 3 months, are described. Preliminary sequencing characterization of isolate K/2002 revealed an S3/S2 recombination event at the 3' end of the VP1 coding region. A recombination event resulted in the introduction of six Sabin 2 amino acid residues in a Sabin 3 genomic background. Furthermore, mutations associated with loss of the attenuated phenotype of Sabin 3 strains have been identified in the genome of isolate K/2002. The data presented here emphasize the need for careful planning of vaccination strategies, which involve stopping OPV administration in regions that are certified to be polio-free

    A new RT-PCR assay for the identification of the predominant recombination types in 2C and 3D genomic regions of vaccine-derived poliovirus strains

    No full text
    In the post-eradication era of wild polioviruses, the only remaining sources of poliovirus infection worldwide would be the vaccine-derived polioviruses (VDPVs). As the preponderance of countries certified to be polio-free has switched from OPV (oral poliovirus vaccine) to IPV (inactivated poliovirus vaccine), importation of recombinant evolved derivatives of vaccinal strains would have serious implication for public health. To test the robustness of the proposed RT-PCR screening analysis, eleven recombinant vaccine-derived polioviruses that were characterized previously by sequencing by our group, in addition to three recently identified recombinant environmental isolates were assayed. Although the most definitive characterization of VDPVs is by genomic sequencing, in this study we describe a new, inexpensive and broadly applicable RT-PCR assay for the identification of the predominant recombination types S3/Sx in 2C and S2/Sx in 3D genomic regions respectively of VDPVs, that can be readily implemented in laboratories lacking sequencing facilities as a first approach for the early detection of vaccine-derived poliovirus (VDPVs). (C) 2009 Elsevier Ltd. All rights reserved
    corecore