2,256 research outputs found
Loop algorithms for quantum simulations of fermion models on lattices
Two cluster algorithms, based on constructing and flipping loops, are
presented for worldline quantum Monte Carlo simulations of fermions and are
tested on the one-dimensional repulsive Hubbard model. We call these algorithms
the loop-flip and loop-exchange algorithms. For these two algorithms and the
standard worldline algorithm, we calculated the autocorrelation times for
various physical quantities and found that the ordinary worldline algorithm,
which uses only local moves, suffers from very long correlation times that
makes not only the estimate of the error difficult but also the estimate of the
average values themselves difficult. These difficulties are especially severe
in the low-temperature, large- regime. In contrast, we find that new
algorithms, when used alone or in combinations with themselves and the standard
algorithm, can have significantly smaller autocorrelation times, in some cases
being smaller by three orders of magnitude. The new algorithms, which use
non-local moves, are discussed from the point of view of a general prescription
for developing cluster algorithms. The loop-flip algorithm is also shown to be
ergodic and to belong to the grand canonical ensemble. Extensions to other
models and higher dimensions is briefly discussed.Comment: 36 pages, RevTex ver.
Pairing Correlations in the Two-Dimensional Hubbard Model
We present the results of a quantum Monte Carlo study of the extended and
the pairing correlation functions for the two-dimensional Hubbard
model, computed with the constrained-path method. For small lattice sizes and
weak interactions, we find that the pairing correlations are
stronger than the extended pairing correlations and are positive when the
pair separation exceeds several lattice constants. As the system size or the
interaction strength increases, the magnitude of the long-range part of both
correlation functions vanishes.Comment: 4 pages, RevTex, 4 figures included; submitted to Phys. Rev. Let
A Constrained Path Quantum Monte Carlo Method for Fermion Ground States
We propose a new quantum Monte Carlo algorithm to compute fermion
ground-state properties. The ground state is projected from an initial
wavefunction by a branching random walk in an over-complete basis space of
Slater determinants. By constraining the determinants according to a trial
wavefunction , we remove the exponential decay of
signal-to-noise ratio characteristic of the sign problem. The method is
variational and is exact if is exact. We report results on the
two-dimensional Hubbard model up to size , for various electron
fillings and interaction strengths.Comment: uuencoded compressed postscript file. 5 pages with 1 figure. accepted
by PRL
Finite-Temperature Monte Carlo Calculations For Systems With Fermions
We present a quantum Monte Carlo method which allows calculations on
many-fermion systems at finite temperatures without any sign decay. This
enables simulations of the grand-canonical ensemble at large system sizes and
low temperatures. Both diagonal and off-diagonal expectations can be computed
straightforwardly. The sign decay is eliminated by a constraint on the fermion
determinant. The algorithm is approximate. Tests on the Hubbard model show that
accurate results on the energy and correlation functions can be obtained.Comment: 5 pages, RevTex; to appear in Phys. Rev. Let
Localized Exotic Smoothness
Gompf's end-sum techniques are used to establish the existence of an infinity
of non-diffeomorphic manifolds, all having the same trivial
topology, but for which the exotic differentiable structure is confined to a
region which is spatially limited. Thus, the smoothness is standard outside of
a region which is topologically (but not smoothly) ,
where is the compact three ball. The exterior of this region is
diffeomorphic to standard . In a
space-time diagram, the confined exoticness sweeps out a world tube which, it
is conjectured, might act as a source for certain non-standard solutions to the
Einstein equations. It is shown that smooth Lorentz signature metrics can be
globally continued from ones given on appropriately defined regions, including
the exterior (standard) region. Similar constructs are provided for the
topology, of the Kruskal form of the Schwarzschild
solution. This leads to conjectures on the existence of Einstein metrics which
are externally identical to standard black hole ones, but none of which can be
globally diffeomorphic to such standard objects. Certain aspects of the Cauchy
problem are also discussed in terms of \models which are
``half-standard'', say for all but for which cannot be globally
smooth.Comment: 8 pages plus 6 figures, available on request, IASSNS-HEP-94/2
Temperature Derivative of the Superfluid Density in the Attractive Hubbard model
Based on extensions of the grand-canonical Quantum Monte-Carlo algorithm to
incorporate magnetic fields, we provide numerical data confirming the existence
of a Kosterlitz-Thouless transition in the attractive Hubbard model. Here, we
calculate the temperature derivative of the superfluid density, to pin down the
transition. Away from half-band filling, the above quantity, shows a response
which increases with lattice size at the transition temperature. In contrast,
such a signal is not observed for the case of a half-band filling.Comment: Latex 8 pages, 3 figures (in postscript format) appendded at the end
of the fil
Ising Expansion for the Hubbard Model
We develop series expansions for the ground state properties of the Hubbard
model, by introducing an Ising anisotropy into the Hamiltonian. For the
two-dimensional (2D) square lattice half-filled Hubbard model, the ground state
energy, local moment, sublattice magnetization, uniform magnetic susceptibility
and spin stiffness are calculated as a function of , where is the
Coulomb constant and is the hopping parameter. Magnetic susceptibility data
indicate a crossover around between spin density wave
antiferromagnetism and Heisenberg antiferromagnetism. Comparisons with Monte
Carlo simulations, RPA result and mean field solutions are also made.Comment: 22 pages, 6 Postscript figures, Revte
Charge and Spin Structures of a Superconductor in the Proximity of an Antiferromagnetic Mott Insulator
To the Hubbard model on a square lattice we add an interaction, , which
depends upon the square of a near-neighbor hopping. We use zero temperature
quantum Monte Carlo simulations on lattice sizes up to , to show
that at half-filling and constant value of the Hubbard repulsion, the
interaction triggers a quantum transition between an antiferromagnetic Mott
insulator and a superconductor. With a combination of finite
temperature quantum Monte Carlo simulations and the Maximum Entropy method, we
study spin and charge degrees of freedom in the superconducting state. We give
numerical evidence for the occurrence of a finite temperature
Kosterlitz-Thouless transition to the superconducting state.
Above and below the Kosterlitz-Thouless transition temperature, , we
compute the one-electron density of states, , the spin relaxation
rate , as well as the imaginary and real part of the spin susceptibility
. The spin dynamics are characterized by the vanishing of
and divergence of in the low
temperature limit. As is approached develops a pseudo-gap
feature and below shows a peak
at finite frequency.Comment: 46 pages (latex) including 14 figures in encapsulated postscript
format. Submitted for publication in Phys. Rev.
A Constrained Path Monte Carlo Method for Fermion Ground States
We describe and discuss a recently proposed quantum Monte Carlo algorithm to
compute the ground-state properties of various systems of interacting fermions.
In this method, the ground state is projected from an initial wave function by
a branching random walk in an over-complete basis of Slater determinants. By
constraining the determinants according to a trial wave function
, we remove the exponential decay of signal-to-noise ratio
characteristic of the sign problem. The method is variational and is exact if
is exact. We illustrate the method by describing in detail its
implementation for the two-dimensional one-band Hubbard model. We show results
for lattice sizes up to and for various electron fillings and
interaction strengths. Besides highly accurate estimates of the ground-state
energy, we find that the method also yields reliable estimates of other
ground-state observables, such as superconducting pairing correlation
functions. We conclude by discussing possible extensions of the algorithm.Comment: 29 pages, RevTex, 3 figures included; submitted to Phys. Rev.
Measuring co-authorship and networking-adjusted scientific impact
Appraisal of the scientific impact of researchers, teams and institutions
with productivity and citation metrics has major repercussions. Funding and
promotion of individuals and survival of teams and institutions depend on
publications and citations. In this competitive environment, the number of
authors per paper is increasing and apparently some co-authors don't satisfy
authorship criteria. Listing of individual contributions is still sporadic and
also open to manipulation. Metrics are needed to measure the networking
intensity for a single scientist or group of scientists accounting for patterns
of co-authorship. Here, I define I1 for a single scientist as the number of
authors who appear in at least I1 papers of the specific scientist. For a group
of scientists or institution, In is defined as the number of authors who appear
in at least In papers that bear the affiliation of the group or institution. I1
depends on the number of papers authored Np. The power exponent R of the
relationship between I1 and Np categorizes scientists as solitary (R>2.5),
nuclear (R=2.25-2.5), networked (R=2-2.25), extensively networked (R=1.75-2) or
collaborators (R<1.75). R may be used to adjust for co-authorship networking
the citation impact of a scientist. In similarly provides a simple measure of
the effective networking size to adjust the citation impact of groups or
institutions. Empirical data are provided for single scientists and
institutions for the proposed metrics. Cautious adoption of adjustments for
co-authorship and networking in scientific appraisals may offer incentives for
more accountable co-authorship behaviour in published articles.Comment: 25 pages, 5 figure
- …