30 research outputs found

    High-Precision Numerical Determination of Eigenvalues for a Double-Well Potential Related to the Zinn-Justin Conjecture

    Full text link
    A numerical method of high precision is used to calculate the energy eigenvalues and eigenfunctions for a symmetric double-well potential. The method is based on enclosing the system within two infinite walls with a large but finite separation and developing a power series solution for the Schro¨\ddot{o}dinger equation. The obtained numerical results are compared with those obtained on the basis of the Zinn-Justin conjecture and found to be in an excellent agreement.Comment: Substantial changes including the title and the content of the paper 8 pages, 2 figures, 3 table

    Perturbation Theory with a Variational Basis: the Generalized Gaussian Effective Potential

    Get PDF
    The perturbation theory with a variational basis is constructed and analyzed.The generalized Gaussian effective potential is introduced and evaluated up to the second order for selfinteracting scalar fields in one and two spatial dimensions. The problem of the renormalization of the mass is discussed in details. Thermal corrections are incorporated. The comparison between the finite temperature generalized Gaussian effective potential and the finite temperature effective potential is critically analyzed. The phenomenon of the restoration at high temperature of the symmetry broken at zero temperature is discussed.Comment: RevTex, 49 pages, 16 eps figure
    corecore