41 research outputs found

    Studies on X-ray Thomson Scattering from Antiferroquadrupolar Order in TmTe

    Full text link
    We study Thomson scattering from the antiferroquadrupole ordering phase in TmTe. On the basis of the group theoretical treatment, we classify the selection rules of the scattering intensity governed by the orientation of the scattering vector G. Then, numerical verification is performed by invoking the ground states which are deduced from a J=7/2 multiplet model. The obtained intensity varies drastically depending on the magnitude and direction of G. We also calculate the scattering intensities under the applied field for H//(001) and (110). Their results behave differently when the orientation of G is changed, which is ascribed to the difference of their primary order parameters; O_{2}^{0} and O_{2}^{2} for H // (001) and (110), respectively. We make critical comparisons between our results for TmTe and the experimental ones for CeB_6. First, we assert that the intensities expected from TmTe at several forbidden Bragg spots are sufficient enough to be experimentally detected. Second, their intensities at (7/2,1/2,1/2) differ significantly and may be attributed to the difference of the order parametersbetween the \Gamma_3-type (O_{2}^{2} and O_{2}^{0}) and \Gamma_5-type (O_{yz}, O_{zx}, and O_{xy}) components, respectively.Comment: 18 pages, 3 figures, to be published in J. Phys. Soc. Jp

    Antiferroquadrupolar Order in the Magnetic Semiconductor TmTe

    Full text link
    The physical properties of the antiferroquadrupolar state occurring in TmTe below TQ=1.8 K have been studied using neutron diffraction in applied magnetic fields. A field-induced antiferromagnetic component k = (1/2,1/2,1/2) is observed and, from its magnitude and direction for different orientations of H, an O(2,2) quadrupole order parameter is inferred. Measurements below TN ~= 0.5 K reveal that the magnetic structure is canted, in agreement with theoretical predictions for in-plane antiferromagnetism. Complex domain repopulation effects occur when the field is increased in the ordered phases, with discontinuities in the superstructure peak intensities above 4 T.Comment: 6 pages, 6 figures, Presented at the International Conference on Strongly Correlated Electrons with Orbital Degrees of Freedom (ORBITAL 2001), September 11-14, 2001 (Sendai, JAPAN). To appear in: Journal of the Physical Society of Japan (2002

    Yb-Yb correlations and crystal-field effects in the Kondo insulator YbB12 and its solid solutions

    Full text link
    We have studied the effect of Lu substitution on the spin dynamics of the Kondo insulator YbB12 to clarify the origin of the spin-gap response previously observed at low temperature in this material. Inelastic neutron spectra have been measured in Yb1-xLuxB12 compounds for four Lu concentrations x = 0, 0.25, 0.90 and 1.0. The data indicate that the disruption of coherence on the Yb sublattice primarily affects the narrow peak structure occurring near 15-20 meV in pure YbB12, whereas the spin gap and the broad magnetic signal around 38 meV remain almost unaffected. It is inferred that the latter features reflect mainly local, single-site processes, and may be reminiscent of the inelastic magnetic response reported for mixed-valence intermetallic compounds. On the other hand, the lower component at 15 meV is most likely due to dynamic short-range magnetic correlations. The crystal-field splitting in YbB12 estimated from the Er3+ transitions measured in a Yb0.9Er0.1B12 sample, has the same order of magnitude as other relevant energy scales of the system and is thus likely to play a role in the form of the magnetic spectral response.Comment: 16 pages in pdf format, 9 figures. v. 2: coauthor list updated; extra details given in section 3.2 (pp. 6-7); one reference added; fig. 5 axis label change

    Dynamical Effective Medium Theory for Quantum Spins and Multipoles

    Full text link
    A dynamical effective medium theory is presented for quantum spins and higher multipoles such as quadrupole moments. The theory is a generalization of the spherical model approximation for the Ising model, and is accurate up to O(1/z_n) where z_n is the number of interacting neighbors. The polarization function is optimized under the condition that it be diagonal in site indices. With use of auxiliary fields and path integrals, the theory is flexibly applied to quantum spins and higher multipoles with many interacting neighbors. A Kondo-type screening of each spin is proposed for systems with extreme quantum fluctuations but without conduction electrons.Comment: 16 pages, 3 Postscript figure

    Two band gap field-dependent thermal conductivity of MgB2MgB_2

    Full text link
    The thermal conductivity κ(H,T)\kappa (H,T) of the new superconductor MgB2MgB_2 was studied as a function of the temperature and a magnetic field. No anomaly in the thermal conductivity κ(H,T)\kappa (H,T) is observed around the superconducting transition in absence or presence of magnetic fields up to 14 Tesla; upon that field the superconductivity of MgB2MgB_2 persisted. The thermal conductivity in zero-field shows a TT-linear increase up to 50K. The thermal conductivity is found to increase with increasing field at high fields. We interpret the findings as if there are two subsystems of quasiparticles with different field-dependent characters in a two (LL and SS)-band superconductor reacting differently with the vortex structure. The unusual enhancement of κ(H,T)\kappa (H ,T) at low temperature but higher than a (Hc2S≃3TH_{c2S}\simeq 3T) critical field is interpreted as a result of the overlap of the low energy states outside the vortex cores in the SS-band.Comment: 6 pages,3 figure

    Microscopic theory of quadrupolar ordering in TmTe

    Full text link
    We have calculated the crystal electric field of TmTe (T>T_Q) and have obtained that the ground state of a Tm 4f hole is the Γ7\Gamma_7 doublet in agreement with Mossbauer experiments. We study the quadrupole interactions arising from quantum transitions of 4f holes of Tm. An effective attraction is found at the L point of the Brillouin zone, q⃗L\vec{q}_L. Assuming that the quadrupolar condensation involves a single arm of q⃗L\vec{q}_L we show that there are two variants for quadrupole ordering which are described by the space groups C2/c and C2/m. The Landau free energy is derived in mean-field theory. The phase transition is of second order. The corresponding quadrupole order parameters are combinations of T2gT_{2g} and EgE_g components. The obtained domain structure is in agreement with observations from neutron diffraction studies for TmTe. Calculated lattice distortions are found to be different for the two variants of quadrupole ordering. We suggest to measure lattice displacements in order to discriminate between those two structures.Comment: 10 pages, 2 figures, 5 tables; accepted by PR

    Collective magnetic excitations in mixed-valence Sm0.83Y0.17S

    Full text link
    The magnetic spectral response of black-phase mixed-valence Sm0.83Y0.17S has been measured by inelastic neutron scattering on a single crystal. Two magnetic peaks are observed in the energy range of the Sm2+ spin-orbit transition (25-40 meV). Both of them exhibit significant dispersion along the three main symmetry directions, reminiscent of the spin-orbit exciton branch found in pure divalent SmS. The results can be reproduced by a simple phenomenological model accounting for the existence of sizeable Sm-Sm exchange interactions, and a microscopic mechanism is proposed on the basis of the "local-bound-state" theory developed previously for SmB6.Comment: 6 pages in pdf format, 3 figures, submitted to Phys. Rev.
    corecore