789 research outputs found

    Non-Abelian Discrete Flavor Symmetries on Orbifolds

    Full text link
    We study non-Abelian flavor symmetries on orbifolds, S1/Z2S^1/Z_2 and T2/Z3T^2/Z_3. Our extra dimensional models realize DND_N, Σ(2N2)\Sigma(2N^2), Δ(3N2)\Delta(3N^2) and Δ(6N2)\Delta(6N^2) including A4A_4 and S4S_4. In addition, one can also realize their subgroups such as QNQ_N, T7T_7, etc. The S3S_3 flavor symmetry can be realized on both S1/Z2S^1/Z_2 and T2/Z3T^2/Z_3 orbifolds.Comment: 16 page

    Hadron Structure on the Lattice

    Full text link
    A few chosen nucleon properties are described from a lattice QCD perspective: the nucleon sigma term and the scalar strangeness in the nucleon; the vector form factors in the nucleon, including the vector strangeness contribution, as well as parity breaking effects like the anapole and electric dipole moment; and finally the axial and tensor charges of the nucleon. The status of the lattice calculations is presented and their potential impact on phenomenology is discussed.Comment: 17 pages, 9 figures; proceedings of the Conclusive Symposium of the Collaborative Research Center 443 "Many-body structure of strongly interacting systems", Mainz, February 23-25, 201

    Lattice QCD determination of m_b, f_B and f_Bs with twisted mass Wilson fermions

    Get PDF
    We present a lattice QCD determination of the b quark mass and of the B and B_s decay constants, performed with N_f=2 twisted mass Wilson fermions, by simulating at four values of the lattice spacing. In order to study the b quark on the lattice, two methods are adopted in the present work, respectively based on suitable ratios with exactly known static limit and on the interpolation between relativistic data, evaluated in the charm mass region, and the static point, obtained by simulating the HQET on the lattice. The two methods provide results in good agreement. For the b quark mass in the MSbar scheme and for the decay constants we obtain m_b(m_b)=4.29(14) GeV, f_B=195(12) MeV, f_Bs=232(10) MeV and f_Bs/f_B=1.19(5). As a byproduct of the analysis we also obtain the results for the f_D and f_Ds decay constants: f_D=212(8) MeV, f_Ds=248(6) MeV and f_Ds/f_D=1.17(5).Comment: 23 pages, 10 figures, 2 tables. Added appendix showing the agreement of the data for the ratios with the HQE prediction. Matching JHEP published versio

    Spontaneous Parity Violation in SUSY Strong Gauge Theory

    Full text link
    We suggest simple models of spontaneous parity violation in supersymmetric strong gauge theory. We focus on left-right symmetric model and investigate vacuum with spontaneous parity violation. Non-perturbative effects are calculable in supersymmetric gauge theory, and we suggest two new models. The first model shows confinement, and the second model has a dual description of the theory. The left-right symmetry breaking and electroweak symmetry breaking are simultaneously occurred with the suitable energy scale hierarchy. The second model also induces spontaneous supersymmetry breaking.Comment: 14 page

    E6,7,8 Magnetized Extra Dimensional Models

    Full text link
    We study 10D super Yang-Mills theory with the gauge groups E6E_6, E7E_7 and E8E_8. We consider the torus/orbifold compacfitication with magnetic fluxes and Wilson lines. They lead to 4D interesting models with three families of quarks and leptons, whose profiles in extra dimensions are quasi-localized because of magnetic fluxes.Comment: 17 pages, 1 figur

    Where is SUSY?

    Full text link
    The direct searches for Superymmetry at colliders can be complemented by direct searches for dark matter (DM) in underground experiments, if one assumes the Lightest Supersymmetric Particle (LSP) provides the dark matter of the universe. It will be shown that within the Constrained minimal Supersymmetric Model (CMSSM) the direct searches for DM are complementary to direct LHC searches for SUSY and Higgs particles using analytical formulae. A combined excluded region from LHC, WMAP and XENON100 will be provided, showing that within the CMSSM gluinos below 1 TeV and LSP masses below 160 GeV are excluded (m_{1/2} > 400 GeV) independent of the squark masses.Comment: 16 pages, 10 figure
    • …
    corecore