16 research outputs found

    EFFECTIVENESS OF SURGICAL RECONSTRUCTION TO RESTORE RADIOCARPAL JOINT MECHANICS AFTER SCAPHOLUNATE LIGAMENT INJURY. AN IN VIVO MODELING STUDY

    Get PDF
    Disruption of the scapholunate ligament can cause a loss of normal scapholunate mechanics and eventually lead to osteoarthritis. Surgical reconstruction attempts to restore scapholunate relationship and shows improvement in functional outcomes, but postoperative effectiveness in restoring normal radiocarpal mechanics still remains a question. The objective of this study was to investigate the benefits of surgical repair by observing changes in contact mechanics on the cartilage surface before and after surgical treatment. Six patients with unilateral scapholunate dissociation were enrolled in the study, and displacement driven magnetic resonance image based-surface contact modeling was used to investigate normal, injured and postoperative radiocarpal mechanics. Model geometry was acquired from images of wrists taken in a relaxed position. Kinematics were acquired from image registration between the relaxed images, and images taken during functional loading. Results showed a trend for increase in radiocarpal contact parameters with injury. Peak and mean contact pressures significantly decreased after surgery in the radiolunate articulation and there were no significant differences between normal and postoperative wrists. Results indicated surgical repair improves contact mechanics after injury and that contact mechanics can be surgically restored to be similar to normal. This study provides novel contact mechanics data on the effects of surgical repair after scapholunate ligament injury. With further work, it may be possible to more effectively differentiate between treatments and degenerative changes based on in vivo contact mechanics data

    Evaluation of magnetic resonance imaging relaxation time in wrist cartilage with scapholunate ligament injury

    Get PDF
    Objective: The overall goal of this research is to identify completely non-invasive in vivo markers of cartilage degeneration following wrist injury in order to facilitate assessment and treatment of wrist injuries and prevention of osteoarthritis as a result of injury. In this study, the transverse relaxation time, T2, from magnetic resonance imaging (MRI) of the wrist cartilage of subjects exhibiting unilateral scapholunate dissociation was analyzed to evaluate changes in the biochemical status of the cartilage in the wrist following injury. Methods: Data collection consisted of MRI scans of the wrist using 2 separate 3T scanners. Fourteen subjects were analyzed, each subject completed scans to evaluate T2 relaxation times on both their injured and contralateral (normal) wrist. Scans were conducted with a maximum of 0.390625 mm/pixel in-plane pixel size and 1 mm slice thickness. A series of four time echo scans ranging from 15-80 ms were collected. T2 relaxation time for each subject was calculated by registering these echo time scans and fitting the corresponding intensity values to an exponential decay curve. Results: The T2 results from all subjects indicated no statistically significant changes with presence of injury. The use of two separate MRI scanners of the same strength of magnet coil did not cause a significant change in measurement values. Conclusions: Our data suggests that either T2 relaxation time does not change with the presence of scapholunate injury in the wrist or that the change was insufficient to be detected in this study. The results from this study may function as a baseline for future studies examining the potential positive effect surgical repair has on T2 relaxation times

    Initial Response of Mature, Experienced Runners to Barefoot Running: Transition to Forefoot Strike

    Get PDF
    Introduction Forefoot strike has been advocated for many runnersbecause of the relatively lower impact and push-off forces comparedto a heel strike. The purpose of this study was to explore the abilityof mature (> 30 years old), experienced runners to transition from aheel foot strike to a forefoot strike when first introduced to barefootrunning on a treadmill. We hypothesized: 1) mature runners who heelstrike while wearing traditional training shoes would persist in heelstriking immediately following a switch to barefoot, 2) mean shoeheel-to-toe drop would be significantly greater in runners who persistin heel striking when running barefoot compared to those who transitionto a forefoot strike pattern, and 3) there would be a significantdecrease in heel striking in the barefoot condition as running speedsincreased. Methods This was a controlled crossover laboratory study. Thirty-three experienced runners (average 23.4 miles per week) withan average age of 45.6 years were recruited for this study. The participantsfirst ran in their standard running shoes and subsequentlybarefoot. A motion capture system was utilized to detect and analyzeany transition from heel strike to forefoot strike made by study participants. Results Of the 26 participants who were classified as heel strikerunners in their running shoes, 50% (13/26, p = 0.001) transitionedto forefoot strike when changing from running in shoes to runningbarefoot. Conclusions The injuries associated with transition from standardrunning shoes to barefoot running or minimalist shoes may be influencedby the persistence of heel striking in mature runners. Olderexperienced runners may have limited ability to transition from heelto forefoot striking when first introduced to barefoot running. Maturerunners should be cautious when beginning a minimalist shoe orbarefoot running regimen
    corecore