3 research outputs found
Two-Dimensional Vortex Lattice Melting
We report on a Monte-Carlo study of two-dimensional Ginzburg-Landau
superconductors in a magnetic field which finds clear evidence for a
first-order phase transition characterized by broken translational symmetry of
the superfluid density. A key aspect of our study is the introduction of a
quantity proportional to the Fourier transform of the superfluid density which
can be sampled efficiently in Landau gauge Monte-Carlo simulations and which
satisfies a useful sum rule. We estimate the latent heat per vortex of the
melting transition to be where is the melting
temperature.Comment: 10 pages (4 figures available on request), RevTex 3.0, IUCM93-00
Grand-Canonical Ensemble of Random Surfaces with Four Species of Ising Spins
The grand-canonical ensemble of dynamically triangulated surfaces coupled to
four species of Ising spins (c=2) is simulated on a computer. The effective
string susceptibility exponent for lattices with up to 1000 vertices is found
to be . A specific scenario for models is
conjectured.Comment: LaTeX, 11 pages + 1 postscript figure appended, preprint LPTHE-Orsay
94/1