1,311 research outputs found

    A phenomenological model of the superconducting state of the Bechgaard salts

    Full text link
    We present a group theoretical analysis of the superconducting state of the Bechgaard salts, e.g., (TMTSF)_2PF_6 or (TMTSF)_2ClO_6. We show that there are eight symmetry distinct superconducting states. Of these only the (fully gapped, even frequency, p-wave, triplet) 'polar state' is consistent with the full range of the experiments on the Bechgaard salts. The gap of the polar state is d(k) (psi_uk,0,0), where psi_uk may be any odd parity function that is translationally invariant.Comment: 4 pages, no figure

    Energy deposition by heavy ions: Additivity of kinetic and potential energy contributions in hillock formation on CaF2

    Full text link
    The formation of nano-hillocks on CaF2 crystal surfaces by individual ion impact has been studied using medium energy (3 and 5 MeV) highly charged ions (Xe19+ to Xe30+) as well as swift (kinetic energies between 12 and 58 MeV) heavy ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy while for swift heavy ions a minimum electronic energy loss is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via electronic energy loss the potential energy threshold for hillock production can be substantially lowered. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, as demonstrated when plotting the results in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to case where kinetic and potential energies are deposited into the surface.Comment: 12 pages, 4 figure

    Seasonality modulates wind-driven mixing pathways in a large lake

    Full text link
    Turbulent mixing controls the vertical transfer of heat, gases and nutrients in stratified water bodies, shaping their response to environmental forcing. Nevertheless, due to technical limitations, the redistribution of wind-derived energy fuelling turbulence within stratified lakes has only been mapped over short (sub-annual) timescales. Here we present a year-round observational record of energy fluxes in the large Lake Geneva. Contrary to the standing view, we show that the benthic layers are the main locus for turbulent mixing only during winter. Instead, most turbulent mixing occurs in the water-column interior during the stratified summer season, when the co-occurrence of thermal stability and lighter winds weakens near-sediment currents. Since stratified conditions are becoming more prevalent –possibly reducing turbulent fluxes in deep benthic environments–, these results contribute to the ongoing efforts to anticipate the effects of climate change on freshwater quality and ecosystem services in large lakes

    Possible Triplet Electron Pairing and an Anisotropic Spin Susceptibility in Organic Superconductors (TMTSF)_2 X

    Full text link
    We argue that (TMTSF)_2 PF_6 compound under pressure is likely a triplet superconductor with a vector order parameter d(k) \equiv (d_a(k) \neq 0, d_c(k) = ?, d_{b'}(k) = 0); |d_a(k)| > |d_c(k)|. It corresponds to an anisotropic spin susceptibility at T=0: \chi_{b'} = \chi_0, \chi_a \ll \chi_0, where \chi_0 is its value in a metallic phase. [The spin quantization axis, z, is parallel to a so-called b'-axis]. We show that the suggested order parameter explains why the upper critical field along the b'-axis exceeds all paramagnetic limiting fields, including that for a nonuniform superconducting state, whereas the upper critical field along the a-axis (a \perp b') is limited by the Pauli paramagnetic effects [I. J. Lee, M. J. Naughton, G. M. Danner and P. M. Chaikin, Phys. Rev. Lett. 78, 3555 (1997)]. The triplet order parameter is in agreement with the recent Knight shift measurements by I. J. Lee et al. as well as with the early results on a destruction of superconductivity by nonmagnetic impurities and on the absence of the Hebel-Slichter peak in the NMR relaxation rate.Comment: 4 pages, 1 eps figur

    Transcriptome Profiling of the Intoxication Response of Tenebrio molitor Larvae to Bacillus thuringiensis Cry3Aa Protoxin

    Get PDF
    Bacillus thuringiensis (Bt) crystal (Cry) proteins are effective against a select number of insect pests, but improvements are needed to increase efficacy and decrease time to mortality for coleopteran pests. To gain insight into the Bt intoxication process in Coleoptera, we performed RNA-Seq on cDNA generated from the guts of Tenebrio molitor larvae that consumed either a control diet or a diet containing Cry3Aa protoxin. Approximately 134,090 and 124,287 sequence reads from the control and Cry3Aa-treated groups were assembled into 1,318 and 1,140 contigs, respectively. Enrichment analyses indicated that functions associated with mitochondrial respiration, signalling, maintenance of cell structure, membrane integrity, protein recycling/synthesis, and glycosyl hydrolases were significantly increased in Cry3Aa-treated larvae, whereas functions associated with many metabolic processes were reduced, especially glycolysis, tricarboxylic acid cycle, and fatty acid synthesis. Microarray analysis was used to evaluate temporal changes in gene expression after 6, 12 or 24 h of Cry3Aa exposure. Overall, microarray analysis indicated that transcripts related to allergens, chitin-binding proteins, glycosyl hydrolases, and tubulins were induced, and those related to immunity and metabolism were repressed in Cry3Aa-intoxicated larvae. The 24 h microarray data validated most of the RNA-Seq data. Of the three intoxication intervals, larvae demonstrated more differential expression of transcripts after 12 h exposure to Cry3Aa. Gene expression examined by three different methods in control vs. Cry3Aa-treated larvae at the 24 h time point indicated that transcripts encoding proteins with chitin-binding domain 3 were the most differentially expressed in Cry3Aa-intoxicated larvae. Overall, the data suggest that T. molitor larvae mount a complex response to Cry3Aa during the initial 24 h of intoxication. Data from this study represent the largest genetic sequence dataset for T. molitor to date. Furthermore, the methods in this study are useful for comparative analyses in organisms lacking a sequenced genome

    Ancestral roles of the Fam20C family of secreted protein kinases revealed in C. elegans.

    Get PDF
    Fam20C is a secreted protein kinase mutated in Raine syndrome, a human skeletal disorder. In vertebrates, bone and enamel proteins are major Fam20C substrates. However, Fam20 kinases are conserved in invertebrates lacking bone and enamel, suggesting other ancestral functions. We show that FAMK-1, the Caenorhabditis elegans Fam20C orthologue, contributes to fertility, embryogenesis, and development. These functions are not fulfilled when FAMK-1 is retained in the early secretory pathway. During embryogenesis, FAMK-1 maintains intercellular partitions and prevents multinucleation; notably, temperature elevation or lowering cortical stiffness reduces requirement for FAMK-1 in these contexts. FAMK-1 is expressed in multiple adult tissues that undergo repeated mechanical strain, and selective expression in the spermatheca restores fertility. Informatic, biochemical, and functional analysis implicate lectins as FAMK-1 substrates. These findings suggest that FAMK-1 phosphorylation of substrates, including lectins, in the late secretory pathway is important in embryonic and tissue contexts where cells are subjected to mechanical strain

    Defect-unbinding and the Bose-glass transition in layered superconductors

    Full text link
    The low-field Bose-glass transition temperature in heavy-ion irradiated Bi_2Sr_2CaCu_2O_8+d increases progressively with increasing density of irradiation-induced columnar defects, but saturates for densities in excess of 1.5 x10^9 cm^-2. The maximum Bose-glass temperature corresponds to that above which diffusion of two-dimensional pancake vortices between different vortex lines becomes possible, and above which the ``line-like'' character of vortices is lost. We develop a description of the Bose-glass line that is in excellent quantitative agreement with the experimental line obtained for widely different values of track density and material parameters.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Gyre formation in open and deep lacustrine embayments: The example of Lake Geneva, Switzerland

    Get PDF
    Numerical simulations were carried out to investigate gyres within open lacustrine embayments subjected to parallel-to-shore currents. In such embayments, gyre formation occurs due to flow separation at the embayment’s upstream edge. High momentum fluid from the mixing layer between the embayment and offshore flows into the embayment and produces recirculating flow. Systematic numerical experiments using different synthetic embayment configurations were used to examine the impact of embayment geometry. Geometries included embayments with different aspect ratios, depths and embayment corner angles. The magnitudes of the recirculation and turbulent kinetic energy (TKE) in the embayment vary significantly for angles in the range 40° to 55°. Embayments with corner angles less than 50° have much stronger recirculation and TKE, other parameters remaining the same. The numerical findings are consistent with gyre formation observed in two embayments located in Lake Geneva, Switzerland, and thus help explain flow patterns recorded in lacustrine shoreline regions

    The role of the reactor size for an investment in the nuclear sector: an evaluation of not-financial parameters

    Get PDF
    The literature presents many studies about the economics of new Nuclear Power Plants (NPPs). Such studies are based on Discounted Cash Flow (DCF) methods encompassing the accounts related to Construction, Operation & Maintenance, Fuel and Decommissioning. However the investment evaluation of a nuclear reactor should also include not-financial factors such as siting and grid constraints, impact on the national industrial system, etc. The Integrated model for the Competitiveness Assessment of SMRs (INCAS), developed by Politecnico di Milano cooperating with the IAEA, is designed to analyze the choice of the better Nuclear Power Plant size as a multidimensional problem. In particular the INCAS’s module “External Factors” evaluates the impact of the factors that are not considered in the traditional DCF methods. This paper presents a list of these factors, providing, for each one, the rationale and the quantification procedure; then each factor is quantified for the Italian case. The IRIS reactor has been chosen as SMR representative. The approach and the framework of the model can be applied to worldwide countries while the specific results apply to most of the European countries. The results show that SMRs have better performances than LRs with respect to the external factors, in general and in the Italian scenario in particular
    corecore