855 research outputs found
Mixed membership stochastic blockmodels
Observations consisting of measurements on relationships for pairs of objects
arise in many settings, such as protein interaction and gene regulatory
networks, collections of author-recipient email, and social networks. Analyzing
such data with probabilisic models can be delicate because the simple
exchangeability assumptions underlying many boilerplate models no longer hold.
In this paper, we describe a latent variable model of such data called the
mixed membership stochastic blockmodel. This model extends blockmodels for
relational data to ones which capture mixed membership latent relational
structure, thus providing an object-specific low-dimensional representation. We
develop a general variational inference algorithm for fast approximate
posterior inference. We explore applications to social and protein interaction
networks.Comment: 46 pages, 14 figures, 3 table
Feature LDA: a supervised topic model for automatic detection of Web API documentations from the Web
Web APIs have gained increasing popularity in recent Web service technology development owing to its simplicity of technology stack and the proliferation of mashups. However, efficiently discovering Web APIs and the relevant documentations on the Web is still a challenging task even with the best resources available on the Web. In this paper we cast the problem of detecting the Web API documentations as a text classification problem of classifying a given Web page as Web API associated or not. We propose a supervised generative topic model called feature latent Dirichlet allocation (feaLDA) which offers a generic probabilistic framework for automatic detection of Web APIs. feaLDA not only captures the correspondence between data and the associated class labels, but also provides a mechanism for incorporating side information such as labelled features automatically learned from data that can effectively help improving classification performance. Extensive experiments on our Web APIs documentation dataset shows that the feaLDA model outperforms three strong supervised baselines including naive Bayes, support vector machines, and the maximum entropy model, by over 3% in classification accuracy. In addition, feaLDA also gives superior performance when compared against other existing supervised topic models
Basic tasks of sentiment analysis
Subjectivity detection is the task of identifying objective and subjective
sentences. Objective sentences are those which do not exhibit any sentiment.
So, it is desired for a sentiment analysis engine to find and separate the
objective sentences for further analysis, e.g., polarity detection. In
subjective sentences, opinions can often be expressed on one or multiple
topics. Aspect extraction is a subtask of sentiment analysis that consists in
identifying opinion targets in opinionated text, i.e., in detecting the
specific aspects of a product or service the opinion holder is either praising
or complaining about
Location Dependent Dirichlet Processes
Dirichlet processes (DP) are widely applied in Bayesian nonparametric
modeling. However, in their basic form they do not directly integrate
dependency information among data arising from space and time. In this paper,
we propose location dependent Dirichlet processes (LDDP) which incorporate
nonparametric Gaussian processes in the DP modeling framework to model such
dependencies. We develop the LDDP in the context of mixture modeling, and
develop a mean field variational inference algorithm for this mixture model.
The effectiveness of the proposed modeling framework is shown on an image
segmentation task
Statistical Mechanics of the Chinese Restaurant Process: lack of self-averaging, anomalous finite-size effects and condensation
The Pitman-Yor, or Chinese Restaurant Process, is a stochastic process that
generates distributions following a power-law with exponents lower than two, as
found in a numerous physical, biological, technological and social systems. We
discuss its rich behavior with the tools and viewpoint of statistical
mechanics. We show that this process invariably gives rise to a condensation,
i.e. a distribution dominated by a finite number of classes. We also evaluate
thoroughly the finite-size effects, finding that the lack of stationary state
and self-averaging of the process creates realization-dependent cutoffs and
behavior of the distributions with no equivalent in other statistical
mechanical models.Comment: (5pages, 1 figure
How Many Topics? Stability Analysis for Topic Models
Topic modeling refers to the task of discovering the underlying thematic
structure in a text corpus, where the output is commonly presented as a report
of the top terms appearing in each topic. Despite the diversity of topic
modeling algorithms that have been proposed, a common challenge in successfully
applying these techniques is the selection of an appropriate number of topics
for a given corpus. Choosing too few topics will produce results that are
overly broad, while choosing too many will result in the "over-clustering" of a
corpus into many small, highly-similar topics. In this paper, we propose a
term-centric stability analysis strategy to address this issue, the idea being
that a model with an appropriate number of topics will be more robust to
perturbations in the data. Using a topic modeling approach based on matrix
factorization, evaluations performed on a range of corpora show that this
strategy can successfully guide the model selection process.Comment: Improve readability of plots. Add minor clarification
Probabilistic Clustering of Time-Evolving Distance Data
We present a novel probabilistic clustering model for objects that are
represented via pairwise distances and observed at different time points. The
proposed method utilizes the information given by adjacent time points to find
the underlying cluster structure and obtain a smooth cluster evolution. This
approach allows the number of objects and clusters to differ at every time
point, and no identification on the identities of the objects is needed.
Further, the model does not require the number of clusters being specified in
advance -- they are instead determined automatically using a Dirichlet process
prior. We validate our model on synthetic data showing that the proposed method
is more accurate than state-of-the-art clustering methods. Finally, we use our
dynamic clustering model to analyze and illustrate the evolution of brain
cancer patients over time
An efficient and principled method for detecting communities in networks
A fundamental problem in the analysis of network data is the detection of
network communities, groups of densely interconnected nodes, which may be
overlapping or disjoint. Here we describe a method for finding overlapping
communities based on a principled statistical approach using generative network
models. We show how the method can be implemented using a fast, closed-form
expectation-maximization algorithm that allows us to analyze networks of
millions of nodes in reasonable running times. We test the method both on
real-world networks and on synthetic benchmarks and find that it gives results
competitive with previous methods. We also show that the same approach can be
used to extract nonoverlapping community divisions via a relaxation method, and
demonstrate that the algorithm is competitively fast and accurate for the
nonoverlapping problem.Comment: 14 pages, 5 figures, 1 tabl
- …