54 research outputs found

    First-Line Matched Related Donor Hematopoietic Stem Cell Transplantation Compared to Immunosuppressive Therapy in Acquired Severe Aplastic Anemia

    Get PDF
    INTRODUCTION: Acquired severe aplastic anemia (SAA) is a rare and progressive disease characterized by an immune-mediated functional impairment of hematopoietic stem cells. Transplantation of these cells is a first-line treatment option if HLA-matched related donors are available. First-line immunosuppressive therapy may be offered as alternative. The aim was to compare the outcome of these patients in controlled trials. METHODS: A systematic search was performed in the bibliographic databases MEDLINE, EMBASE, and The Cochrane Library. To show an overview of various outcomes by treatment group we conducted a meta-analysis on overall survival. We evaluated whether studies reported statistically significant factors for improved survival. RESULTS: 26 non-randomized controlled trials (7,955 patients enrolled from 1970 to 2001) were identified. We did not identify any RCTs. Risk of bias was high except in 4 studies. Young age and recent year of treatment were identified as factors for improved survival in the HSCT group. Advanced age, SAA without very severe aplastic anemia, and combination of anti-lymphocyte globulin with cyclosporine A were factors for improved survival in the IST group. In 19 studies (4,855 patients), summary statistics were sufficient to be included in meta-analysis. Considerable heterogeneity did not justify a pooled estimate. Adverse events were inconsistently reported and varied significantly across studies. CONCLUSIONS: Young age and recent year of treatment were identified as factors for improved survival in the transplant group. Advanced age, SAA without very severe aplastic anemia, and combination of anti-lymphocyte globulin with cyclosporine A were factors for improved survival in the immunosuppressive group. Considerable heterogeneity of non-randomized controlled studies did not justify a pooled estimate. Adverse events were inconsistently reported and varied significantly across studies

    Gene transfer into hematopoietic cells [letter; comment]

    No full text

    Bone marrow transplantation for childhood Ki-1 lymphoma.

    No full text

    Delivery of antisense oligonucleotide to the cornea by iontophoresis.

    No full text
    We wished to evaluate the potential of iontophoresis to promote the delivery of antisense oligonucleotides (ODN) directed at the vascular endothelial growth factor (VEGF)-R2 receptor (KDR/Flk) to the cornea of the rat eye. Fluorescence (CY5)-labeled ODNs in phosphate-buffered saline (PBS) (20 microM) were locally administered to rat eyes, and their fate within the anterior segment was studied. Thirty-four male, 5-week-old Wistar rats were used for all experiments. The rats were divided in four groups. In group I (12 rats, 12 eyes), the ODNs (20 microM) were delivered by iontophoresis (300 microA for 5 minutes) using a specially designed corneal applicator. In group II (12 rats, 12 eyes), the ODNs (20 microM) were delivered using the same applicator, but no electrical current was applied. In group III (6 rats, 6 eyes), a corneal neovascular reaction was induced prior to the application of ODNs (20 microM), and iontophoresis electrical current was delivered as for group I rats. Group IV (4 rats, 4 eyes) received ODN (60 microM) iontophoresis application (300 microA for 5 minutes) and were used for ODN integrity studies. The animals were killed 5 minutes, 90 minutes, and 24 hours after a single ODN application and studied. Topically applied ODNs using the same iontophoresis applicator but without current do not penetrate the cornea and remain confined to the superficial epithelial layer. ODNs delivered with transcorneoscleral iontophoresis penetrate into all corneal layers and are also detected in the iris. In corneas with neovascularization, ODNs were particularly localized within the vascular endothelial cells of the stroma. ODNs extracted from eye tissues 24 hours after iontophoresis remained unaltered. The iontophoresis current did not cause any detectable ocular damage under these conditions. Iontophoresis promotes the delivery of ODNs to the anterior segment of the eye, including all corneal layers. Iontophoresis of ODNs directed at VEGF-R2 may be used for the design of specific antiangiogenic strategy in diseases of the cornea
    corecore