109 research outputs found
Magnetic Transformations in the Organic Conductor kappa-(BETS)2Mn[N(CN)2]3 at the Metal-Insulator Transition
A complex study of magnetic properties including dc magnetization, 1H NMR and
magnetic torque measurements has been performed for the organic conductor
kappa-(BETS)2Mn[N(CN)2]3 which undergoes a metal-insulator transition at
T_MI~25K. NMR and the magnetization data indicate a transition in the manganese
subsystem from paramagnetic to a frozen state at T_MI, which is, however, not a
simple Neel type order. Further, a magnetic field induced transition resembling
a spin flop has been detected in the torque measurements at temperatures below
T_MI. This transition is most likely related to the spins of pi-electrons
localized on the organic molecules BETS and coupled with the manganese 3d spins
via exchange interaction.Comment: 6 pages, 5 Figures, 1 Table; Submitted to Phys.Rev.B (Nov.2010
Pressure dependence of the Shubnikov-de Haas oscillation pectrum of beta''-(BEDT-TTF)4(NH4)[Cr(C2O4)3].DMF
The Shubnikov-de Haas (SdH) oscillation spectra of the
beta''-(BEDT-TTF)4(NH4)[Cr(C2O4)\_3].DMF organic metal have been studied in
pulsed magnetic fields of up to either 36 T at ambient pressure or 50 T under
hydrostatic pressures of up to 1 GPa. The ambient pressure SdH oscillation
spectra can be accounted for by up to six fundamental frequencies which points
to a rather complex Fermi surface (FS). A noticeable pressure-induced
modification of the FS topology is evidenced since the number of frequencies
observed in the spectra progressively decreases as the pressure increases.
Above 0.8 GPa, only three compensated orbits are observed, as it is the case
for several other isostructural salts of the same family at ambient pressure.
Contrary to other organic metals, of which the FS can be regarded as a network
of orbits, no frequency combinations are observed for the studied salt, likely
due to high magnetic breakdown gap values or (and) high disorder level
evidenced by Dingle temperatures as large as about 7 K.Comment: To be published in European Physical Journal
Indication for the coexistence of closed orbit and quantum interferometer with the same cross section in the organic metal (ET)4(H3O)[Fe(C2O4)3].C6H4Cl2: Persistence of SdH oscillations above 30 K
Shubnikov-de Haas (SdH) and de Haas-van Alphen (dHvA) oscillations spectra of
the quasi-two dimensional charge transfer salt
"-(ET)(HO)[Fe(CO)]CHCl have been
investigated in pulsed magnetic fields up to 54 T. The data reveal three basic
frequencies F, F and F, which can be interpreted on the basis
of three compensated closed orbits at low temperature. However a very weak
thermal damping of the Fourier component F, with the highest amplitude, is
evidenced for SdH spectra above about 6 K. As a result, magnetoresistance
oscillations are observed at temperatures higher than 30 K. This feature, which
is not observed for dHvA oscillations, is in line with quantum interference,
pointing to a Fermi surface reconstruction in this compound.Comment: published in Eur. Phys. J. B 71 203 (2009
Structure of the Fulde-Ferrell-Larkin-Ovchinnikov state in two-dimensional superconductors
Nonuniform superconducting state due to strong spin magnetism is studied in
two-dimensional type-II superconductors near the second order phase transition
line between the normal and the superconducting states. The optimum spatial
structure of the orderparameter is examined in systems with cylindrical
symmetric Fermi surfaces. It is found that states with two-dimensional
structures have lower free energies than the traditional one-dimensional
solutions, at low temperatures and high magnetic fields. For s-wave pairing,
triangular, square, hexagonal states are favored depending on the temperature,
while square states are favored at low temperatures for d-wave pairing. In
these states, orderparameters have two-dimensional structures such as square
and triangular lattices.Comment: 11 pages (LaTeX, revtex.sty), 3 figures; added reference
Staggered Spin Order of Localized pi-electrons in the Insulating State of the Organic Conductor kappa-BETS)2Mn[N(CN)2]3
Magnetic properties of the conduction pi-electron system of
kappa-BETS)2Mn[N(CN)2]3 have been probed using 13C NMR. At ambient pressure,
the metal-insulator transition observed in the resistivity measurements below
T~23K is shown to be accompanied by ordering of the pi-spins in a long-range
staggered structure. As the metal-insulator transition is suppressed by
applying a small pressure of ~0.5 kbar, the pi-spin system maintains the
properties of the metallic state down to 5K.Comment: 13 pages, 4 figure
The Dependence of the Superconducting Transition Temperature of Organic Molecular Crystals on Intrinsically Non-Magnetic Disorder: a Signature of either Unconventional Superconductivity or Novel Local Magnetic Moment Formation
We give a theoretical analysis of published experimental studies of the
effects of impurities and disorder on the superconducting transition
temperature, T_c, of the organic molecular crystals kappa-ET_2X and beta-ET_2X
(where ET is bis(ethylenedithio)tetrathiafulvalene and X is an anion eg I_3).
The Abrikosov-Gorkov (AG) formula describes the suppression of T_c both by
magnetic impurities in singlet superconductors, including s-wave
superconductors and by non-magnetic impurities in a non-s-wave superconductor.
We show that various sources of disorder lead to the suppression of T_c as
described by the AG formula. This is confirmed by the excellent fit to the
data, the fact that these materials are in the clean limit and the excellent
agreement between the value of the interlayer hopping integral, t_perp,
calculated from this fit and the value of t_perp found from angular-dependant
magnetoresistance and quantum oscillation experiments. If the disorder is, as
seems most likely, non-magnetic then the pairing state cannot be s-wave. We
show that the cooling rate dependence of the magnetisation is inconsistent with
paramagnetic impurities. Triplet pairing is ruled out by several experiments.
If the disorder is non-magnetic then this implies that l>=2, in which case
Occam's razor suggests that d-wave pairing is realised. Given the proximity of
these materials to an antiferromagnetic Mott transition, it is possible that
the disorder leads to the formation of local magnetic moments via some novel
mechanism. Thus we conclude that either kappa-ET_2X and beta-ET_2X are d-wave
superconductors or else they display a novel mechanism for the formation of
localised moments. We suggest systematic experiments to differentiate between
these scenarios.Comment: 18 pages, 5 figure
- …