208 research outputs found
Combinatorial Characteristics of Verbal Formula of Apology <i>sorry</i> in Russian Language
The article is devoted to analysis of the combinatorial characteristics of speech formulas of apology sorry in the Russian language used in informal communication. 150 text fragments extracted from the corpora of the Russian language that include this formula are reviewed. On the basis of this material the analysis of the compatibility of the unit of speech in each of its meanings is made. Test samples of word tokens are divided into two groups according to two main functions that can perform this verbal formula. The first group includes cases in which the expression of apology is the primary function of the form sorry . The second group includes cases in which the expression of apology is its secondary function and analyzed form is firstly used to soften the statement, to establish communicative contact, to the complete communicative situation. The article reveals the ratio of cases using formula of apology sorry in different functions. Novelty of research consists in that still there were no special studies of the combinatorial characteristics of syntactic units. The obtained results reveal the efficiency of the approach to the study of the functioning of language units from the point of view of combinatorial syntax and confirm the feasibility of this task
Basic Strategies for Indirect Reduced Apology in English
Attention is paid to the methods of implementing direct and indirect speech acts of apology. It is shown that the use of an indirect speech act of apology along with a direct speech act of apology is typical of the English language. It is noted that the tendency toward the use of stable expressions observed in the English language allows us to analyze the implementation of the indirect speech act of apology with the help of linguistic corps by requesting clichéd expressions used instead of standard speech apology formulas. The description of the methods of formation of indirect speech acts is given. The conditions necessary for the implementation of these speech acts are indicated. The authors dwell on a detailed study of such a method of forming an indirect speech act of apology as reduction, since this method is the main one for an indirect apology. An overview of the main strategies for reduced apology in the English language is given. The analysis of the implementation of these strategies, which can be used individually or combined with each other depending on the context, is performed. The novelty of the study is that for the first time a detailed description of the realizations of the reduced speech act of apology based on the material of linguistic corps is given
Why could Electron Spin Resonance be observed in a heavy fermion Kondo lattice?
We develop a theoretical basis for understanding the spin relaxation
processes in Kondo lattice systems with heavy fermions as experimentally
observed by electron spin resonance (ESR). The Kondo effect leads to a common
energy scale that regulates a logarithmic divergence of different spin kinetic
coefficients and supports a collective spin motion of the Kondo ions with
conduction electrons. We find that the relaxation rate of a collective spin
mode is greatly reduced due to a mutual cancelation of all the divergent
contributions even in the case of the strongly anisotropic Kondo interaction.
The contribution to the ESR linewidth caused by the local magnetic field
distribution is subject to motional narrowing supported by ferromagnetic
correlations. The developed theoretical model successfully explains the ESR
data of YbRh2Si2 in terms of their dependence on temperature and magnetic
field.Comment: 5pages, 1 Figur
Tomography in soil science
The main advantages of applying computed tomography to studying soil samples include non-invasiveness, independence of the moisture content in the samples and the possibility for mathematical modelling. The methodological problems of this imaging technique include restrictions of the sample size, resolution limitations and segmentation difficulties
Identification of Extracellular Segments by Mass Spectrometry Improves Topology Prediction of Transmembrane Proteins
Transmembrane proteins play crucial role in signaling, ion transport, nutrient uptake, as well as in maintaining the dynamic equilibrium between the internal and external environment of cells. Despite their important biological functions and abundance, less than 2% of all determined structures are transmembrane proteins. Given the persisting technical difficulties associated with high resolution structure determination of transmembrane proteins, additional methods, including computational and experimental techniques remain vital in promoting our understanding of their topologies, 3D structures, functions and interactions. Here we report a method for the high-throughput determination of extracellular segments of transmembrane proteins based on the identification of surface labeled and biotin captured peptide fragments by LC/MS/MS. We show that reliable identification of extracellular protein segments increases the accuracy and reliability of existing topology prediction algorithms. Using the experimental topology data as constraints, our improved prediction tool provides accurate and reliable topology models for hundreds of human transmembrane proteins
The evidence base for circulating tumour DNA blood-based biomarkers for the early detection of cancer: a systematic mapping review
Background: The presence of circulating cell-free DNA from tumours in blood (ctDNA) is of major importance to those interested in early cancer detection, as well as to those wishing to monitor tumour progression or diagnose the presence of activating mutations to guide treatment. In 2014, the UK Early Cancer Detection Consortium undertook a systematic mapping review of the literature to identify blood-based biomarkers with potential for the development of a non-invasive blood test for cancer screening, and which identified this as a major area of interest. This review builds on the mapping review to expand the ctDNA dataset to examine the best options for the detection of multiple cancer types. Methods: The original mapping review was based on comprehensive searches of the electronic databases Medline, Embase, CINAHL, the Cochrane library, and Biosis to obtain relevant literature on blood-based biomarkers for cancer detection in humans (PROSPERO no. CRD42014010827). The abstracts for each paper were reviewed to determine whether validation data were reported, and then examined in full. Publications concentrating on monitoring of disease burden or mutations were excluded. Results: The search identified 94 ctDNA studies meeting the criteria for review. All but 5 studies examined one cancer type, with breast, colorectal and lung cancers representing 60% of studies. The size and design of the studies varied widely. Controls were included in 77% of publications. The largest study included 640 patients, but the median study size was 65 cases and 35 controls, and the bulk of studies (71%) included less than 100 patients. Studies either estimated cfDNA levels non-specifically or tested for cancer-specific mutations or methylation changes (the majority using PCR-based methods). Conclusion: We have systematically reviewed ctDNA blood biomarkers for the early detection of cancer. Pre-analytical, analytical, and post-analytical considerations were identified which need to be addressed before such biomarkers enter clinical practice. The value of small studies with no comparison between methods, or even the inclusion of controls is highly questionable, and larger validation studies will be required before such methods can be considered for early cancer detection
Amphioxus functional genomics and the origins of vertebrate gene regulation.
Vertebrates have greatly elaborated the basic chordate body plan and evolved highly distinctive genomes that have been sculpted by two whole-genome duplications. Here we sequence the genome of the Mediterranean amphioxus (Branchiostoma lanceolatum) and characterize DNA methylation, chromatin accessibility, histone modifications and transcriptomes across multiple developmental stages and adult tissues to investigate the evolution of the regulation of the chordate genome. Comparisons with vertebrates identify an intermediate stage in the evolution of differentially methylated enhancers, and a high conservation of gene expression and its cis-regulatory logic between amphioxus and vertebrates that occurs maximally at an earlier mid-embryonic phylotypic period. We analyse regulatory evolution after whole-genome duplications, and find that-in vertebrates-over 80% of broadly expressed gene families with multiple paralogues derived from whole-genome duplications have members that restricted their ancestral expression, and underwent specialization rather than subfunctionalization. Counter-intuitively, paralogues that restricted their expression increased the complexity of their regulatory landscapes. These data pave the way for a better understanding of the regulatory principles that underlie key vertebrate innovations
Theories of schizophrenia: a genetic-inflammatory-vascular synthesis
BACKGROUND: Schizophrenia, a relatively common psychiatric syndrome, affects virtually all brain functions yet has eluded explanation for more than 100 years. Whether by developmental and/or degenerative processes, abnormalities of neurons and their synaptic connections have been the recent focus of attention. However, our inability to fathom the pathophysiology of schizophrenia forces us to challenge our theoretical models and beliefs. A search for a more satisfying model to explain aspects of schizophrenia uncovers clues pointing to genetically mediated CNS microvascular inflammatory disease. DISCUSSION: A vascular component to a theory of schizophrenia posits that the physiologic abnormalities leading to illness involve disruption of the exquisitely precise regulation of the delivery of energy and oxygen required for normal brain function. The theory further proposes that abnormalities of CNS metabolism arise because genetically modulated inflammatory reactions damage the microvascular system of the brain in reaction to environmental agents, including infections, hypoxia, and physical trauma. Damage may accumulate with repeated exposure to triggering agents resulting in exacerbation and deterioration, or healing with their removal. There are clear examples of genetic polymorphisms in inflammatory regulators leading to exaggerated inflammatory responses. There is also ample evidence that inflammatory vascular disease of the brain can lead to psychosis, often waxing and waning, and exhibiting a fluctuating course, as seen in schizophrenia. Disturbances of CNS blood flow have repeatedly been observed in people with schizophrenia using old and new technologies. To account for the myriad of behavioral and other curious findings in schizophrenia such as minor physical anomalies, or reported decreased rates of rheumatoid arthritis and highly visible nail fold capillaries, we would have to evoke a process that is systemic such as the vascular and immune/inflammatory systems. SUMMARY: A vascular-inflammatory theory of schizophrenia brings together environmental and genetic factors in a way that can explain the diversity of symptoms and outcomes observed. If these ideas are confirmed, they would lead in new directions for treatments or preventions by avoiding inducers of inflammation or by way of inflammatory modulating agents, thus preventing exaggerated inflammation and consequent triggering of a psychotic episode in genetically predisposed persons
Perturbative transport experiments on TJ-II Flexible Heliac
Transport properties of TJ-II are explored performing perturbative experiments and taking advantage of TJ-II flexibility. Rotational transform can be varied in a wide range, which allows one to introduce low order rationals and to study their effect on transport. On the other hand, confinement properties can be studied at very different rotational transform values and for different values of magnetic shear: Experiments on influence of the magnetic shear on confinement are reported. In these cases a Ohmic current has been induced in TJ-II plasma to modify magnetic shear and to evaluate itsd effect on confinement, showing that negative shear improves the confinement. Heat transport is also reduced by locating a low order rational near the power deposition profile. Plasma potential profiles have been recently measured in some configurations up to the plasma core with the Heavy Ion Beam Probe (HIBP) diagnostic and the electric field values measured in low-density plasmas are consistent with neoclassical calculations near the plasma core. Plasma edge turbulent transport has been studied in configurations that are marginally stable due to decreased magnetic well. Results show a dynamical coupling between gradients and turbulent transport. Finally, cold pulse propagation has been studied showing ballistic non diffusive propagation
- …