20 research outputs found
Portal vein thrombus and liver failure in a patient with pheochromocytoma crisis
A 51-year-old man with known pheochromocytoma refused surgical treatment over several years and subsequently presented in catecholamine crisis with shock and multiple organ failure. Laboratory testing revealed liver failure with elevated liver enzymes and coagulation abnormalities, and imaging showed ischemia of extended parts of the right liver lobe. It also revealed a large thrombus in the right portal vein, which together with severe arterial vasoconstriction impaired the dual blood supply of the liver. The patient recovered after effective medical treatment and finally underwent surgical tumor resection. Thereafter, antihypertensive treatment could be stopped. We present this exceptional case of adrenal crisis and discuss the mechanisms leading to liver failure in general and portal vein thrombosis in particular
Erythropoietin neuroprotection is enhanced by direct cortical application following subdural blood evacuation in a rat model of acute subdural hematoma
Recombinant human erythropoietin (EPO) has been successfully tested as neuroprotectant in brain injury models. The first large clinical trial with stroke patients, however, revealed negative results. Reasons are manifold and may include side-effects such as thrombotic complications or interactions with other medication, EPO concentration, penetration of the blood-brain-barrier and/or route of application. The latter is restricted to systemic application. Here we hypothesize that EPO is neuroprotective in a rat model of acute subdural hemorrhage (ASDH) and that direct cortical application is a feasible route of application in this injury type. The subdural hematoma was surgically evacuated and EPO was applied directly onto the surface of the brain. We injected NaCl, 200, 2000 or 20,000IU EPO per rat i.v. at 15min post-ASDH (400ÎŒl autologous venous blood) or NaCl, 0.02, 0.2 or 2IU per rat onto the cortical surface after removal of the subdurally infused blood t at 70min post-ASDH. Arterial blood pressure (MAP), blood chemistry, intracranial pressure (ICP), cerebral blood flow (CBF) and brain tissue oxygen (ptiO2) were assessed during the first hour and lesion volume at 2days after ASDH. EPO 20,000IU/rat (i.v.) elevated ICP significantly. EPO at 200 and 2000IU reduced lesion volume from 38.2±0.6mm(3) (NaCl-treated group) to 28.5±0.9 and 22.2±1.3mm(3) (all p<0.05 vs. NaCl). Cortical application of 0.02IU EPO after ASDH evacuation reduced injury from 36.0±5.2 to 11.2±2.1mm(3) (p=0.007), whereas 0.2IU had no effect (38.0±9.0mm(3)). The highest dose of both application routes (i.v. 20,000IU; cortical 2IU) enlarged the ASDH-induced damage significantly to 46.5±1.7 and 67.9±10.4mm(3) (all p<0.05 vs. NaCl). In order to test whether Tween-20, a solvent of EPO formulation 'NeoRecomonÂź' was responsible for adverse effects two groups were treated with NaCl or Tween-20 after the evacuation of ASDH, but no difference in lesion volume was detected. In conclusion, EPO is neuroprotective in a model of ASDH in rats and was most efficacious at a very low dose in combination with subdural blood removal. High systemic and topically applied concentrations caused adverse effects on lesion size which were partially due to increased ICP. Thus, patients with traumatic ASDH could be treated with cortically applied EPO but with caution concerning concentration
Impaired cannabinoid receptor type 1 signaling interferes with stress-coping behavior in mice
Dysregulation of the endocannabinoid system is known to interfere with emotional processing of stressful events. Here, we studied the role of cannabinoid receptor type 1 (CB1) signaling in stress-coping behaviors using the forced swim test (FST) with repeated exposures. We compared effects of genetic inactivation with pharmacological blockade of CB1 receptors both in male and female mice. In addition, we investigated potential interactions of the endocannabinoid system with monoaminergic and neurotrophin systems of the brain. Naive CB1 receptor-deficient mice (CB1-/-) showed increased passive stress-coping behaviors as compared to wild-type littermates (CB1+/+) in the FST, independent of sex. These findings were partially reproduced in C57BL/6N animals and fully reproduced in female CB1+/+ mice by pharmacological blockade of CB1 receptors with the CB1 receptor antagonist SR141716. The specificity of SR141716 was confirmed in female CB1-/- mice, where it failed to affect behavioral performance. Sensitivity to the antidepressants desipramine and paroxetine was preserved, but slightly altered in female CB1-/- mice. There were no genotype differences between CB1+/+ and CB1-/- mice in monoamine oxidase A and B activities under basal conditions, nor in monoamine content of hippocampal tissue after FST exposure. mRNA expression of vesicular glutamate transporter type 1 was unaffected in CB1-/- mice, but mRNA expression of brain-derived neurotrophic factor (BDNF) was reduced in the hippocampus. Our results suggest that impaired CB1 receptor function promotes passive stress-coping behavior, which, at least in part, might relate to alterations in BDNF function
Rhinofacial Conidiobolus coronatus Infection Presenting with Nasal Enlargement
Rhinofacial Conidiobolus coronatus infection is a rare form of zygomycosis in humans living in the northern hemispheres. Most human cases are observed in the periequatorial areas of Africa, Asia, or South America. Only limited information regarding optimal treatment is available. We report a case of rhinofacial C. coronatus infection in an emigrated Sudanese patient. The infection was successfully treated with terbinafin and itraconazole for 12 months. Diagnosis was confirmed by microbiological culture from a tissue biopsy. Antimicrobial susceptibility testing of this organism was not predictive of optimal therapy