1 research outputs found

    Temperature Dependence of the Band Gap of Semiconducting Carbon Nanotubes

    Full text link
    The temperature dependence of the band gap of semiconducting single-wall carbon nanotubes (SWNTs) is calculated by direct evaluation of electron-phonon couplings within a ``frozen-phonon'' scheme. An interesting diameter and chirality dependence of Eg(T)E_g(T) is obtained, including non-monotonic behavior for certain tubes and distinct ``family'' behavior. These results are traced to a strong and complex coupling between band-edge states and the lowest-energy optical phonon modes in SWNTs. The Eg(T)E_g(T) curves are modeled by an analytic function with diameter and chirality dependent parameters; these provide a valuable guide for systematic estimates of Eg(T)E_g(T) for any given SWNT. Magnitudes of the temperature shifts at 300 K are smaller than 12 meV and should not affect (n,m)(n,m) assignments based on optical measurements.Comment: To appear in Phys. Rev. Let
    corecore