201 research outputs found
Bypassing the Inertness of Aziridine/CO2 Systems to Access 5-Aryl-2-Oxazolidinones: Catalyst-Free Synthesis Under Ambient Conditions
The development of sustainable synthetic routes to access valuable oxazolidinones via CO2 fixation is an active research area, and the aziridine/carbon dioxide coupling has aroused a considerable interest. This reaction features a high activation barrier and thus requires a catalytic system, and may present some other critical issues. Here, the straightforward gram-scale synthesis of a series of 5-aryl-2-oxazolidinones was developed at ambient temperature and atmospheric CO2 pressure, in the absence of any catalyst/co-catalyst. The key to this innovative procedure consists in the direct transfer of the pre-formed amine/CO2 adduct (carbamate) to common aziridine precursors (dimethylsulfonium salts), replacing the classical sequential addition of amine (intermediate isolation of aziridine) and then CO2. The reaction mechanism was investigated by NMR spectroscopy and DFT calculations applied to model cases
Determining the Moisture Content of Pre-Wetted Lightweight Aggregate: Assessing the Variability of the Paper Towel and Centrifuge Methods
Internally cured (IC) concrete is frequently produced in North America using pre-wetted lightweight aggregate (LWA). One important aspect associated with the production of quality IC concrete is the accurate determination of the moisture content, including absorbed moisture and surface moisture of the LWA. Knowledge of the moisture content enables aggregate moisture corrections to be made for the concrete mixture, thereby enabling an accurate water-to-cement ratio to be maintained. Two methods for determining the moisture content of LWA include the specified ASTM C1761-13b “paper towel method” and a method that uses a centrifuge (Miller, Barrett, Zander, & Weiss, 2014). There are limited data available on the variability associated with either of these approaches when the test is performed by multiple users. In this study, the absorption of four commercially available LWAs was tested by a single operator in a single laboratory using the centrifuge method. In addition, the absorption of three commercially available LWAs was tested by 25 users performing both experimental methods. This article provides an estimation of precision associated with both a single operator and multiple operators performing both the paper towel method and the centrifuge method to find the absorption of pre-wetted lightweight fine aggregate
Discovery and characterization of noncanonical E2-conjugating enzymes
E2-conjugating enzymes (E2s) play a central role in the enzymatic cascade that leads to the attachment of ubiquitin to a substrate. This process, termed ubiquitylation, is required to maintain cellular homeostasis and affects almost all cellular process. By interacting with multiple E3 ligases, E2s dictate the ubiquitylation landscape within the cell. Since its discovery, ubiquitylation has been regarded as a posttranslational modification that specifically targets lysine side chains (canonical ubiquitylation). We used Matrix-Assisted Laser Desorption/Ionization-Time Of Flight Mass Spectrometry to identify and characterize a family of E2s that are instead able to conjugate ubiquitin to serine and/or threonine. We used structural modeling and prediction tools to identify the key activity determinants that these E2s use to interact with ubiquitin as well as their substrates. Our results unveil the missing E2s necessary for noncanonical ubiquitylation, underscoring the adaptability and versatility of ubiquitin modifications.</p
Discovery and characterization of noncanonical E2-conjugating enzymes
E2-conjugating enzymes (E2s) play a central role in the enzymatic cascade that leads to the attachment of ubiquitin to a substrate. This process, termed ubiquitylation, is required to maintain cellular homeostasis and affects almost all cellular process. By interacting with multiple E3 ligases, E2s dictate the ubiquitylation landscape within the cell. Since its discovery, ubiquitylation has been regarded as a posttranslational modification that specifically targets lysine side chains (canonical ubiquitylation). We used Matrix-Assisted Laser Desorption/Ionization-Time Of Flight Mass Spectrometry to identify and characterize a family of E2s that are instead able to conjugate ubiquitin to serine and/or threonine. We used structural modeling and prediction tools to identify the key activity determinants that these E2s use to interact with ubiquitin as well as their substrates. Our results unveil the missing E2s necessary for noncanonical ubiquitylation, underscoring the adaptability and versatility of ubiquitin modifications.</p
Modulation of Astrocytic Mitochondrial Function by Dichloroacetate Improves Survival and Motor Performance in Inherited Amyotrophic Lateral Sclerosis
Mitochondrial dysfunction is one of the pathogenic mechanisms that lead to neurodegeneration in Amyotrophic Lateral Sclerosis (ALS). Astrocytes expressing the ALS-linked SOD1G93A mutation display a decreased mitochondrial respiratory capacity associated to phenotypic changes that cause them to induce motor neuron death. Astrocyte-mediated toxicity can be prevented by mitochondria-targeted antioxidants, indicating a critical role of mitochondria in the neurotoxic phenotype. However, it is presently unknown whether drugs currently used to stimulate mitochondrial metabolism can also modulate ALS progression. Here, we tested the disease-modifying effect of dichloroacetate (DCA), an orphan drug that improves the functional status of mitochondria through the stimulation of the pyruvate dehydrogenase complex activity (PDH). Applied to astrocyte cultures isolated from rats expressing the SOD1G93A mutation, DCA reduced phosphorylation of PDH and improved mitochondrial coupling as expressed by the respiratory control ratio (RCR). Notably, DCA completely prevented the toxicity of SOD1G93A astrocytes to motor neurons in coculture conditions. Chronic administration of DCA (500 mg/L) in the drinking water of mice expressing the SOD1G93A mutation increased survival by 2 weeks compared to untreated mice. Systemic DCA also normalized the reduced RCR value measured in lumbar spinal cord tissue of diseased SOD1G93A mice. A remarkable effect of DCA was the improvement of grip strength performance at the end stage of the disease, which correlated with a recovery of the neuromuscular junction area in extensor digitorum longus muscles. Systemic DCA also decreased astrocyte reactivity and prevented motor neuron loss in SOD1G93A mice. Taken together, our results indicate that improvement of the mitochondrial redox status by DCA leads to a disease-modifying effect, further supporting the therapeutic potential of mitochondria-targeted drugs in ALS
A survey of clinical features of allergic rhinitis in adults
Background: Allergic rhinitis (AR) has high prevalence and substantial socio-economic burden.
Material/Methods: The study included 35 Italian Centers recruiting an overall number of 3383 adult patients with rhinitis (48% males, 52% females, mean age 29.1, range 18–45 years). For each patient, the attending physician had to fill in a standardized questionnaire, covering, in particular, some issues such as the ARIA classification of allergic rhinitis (AR), the results of skin prick test (SPT), the kind of treatment, the response to treatment, and the satisfaction with treatment.
Results: Out of the 3383 patients with rhinitis, 2788 (82.4%) had AR: 311 (11.5%) had a mild intermittent, 229 (8.8%) a mild persistent, 636 (23.5%) a moderate-severe intermittent, and 1518 (56.1%) a moderate-severe persistent form. The most frequently used drugs were oral antihistamines (77.1%) and topical corticosteroids (60.8%). The response to treatment was judged as excellent in 12.2%, good in 41.3%, fair in 31.2%, poor in 14.5%, and very bad in 0.8% of subjects. The rate of treatment dissatisfaction was significantly higher in patients with moderate-to-severe AR than in patients with mild AR (p<0.0001). Indication to allergen immunotherapy (AIT) was significantly more frequent (p<0.01) in patients with severe AR than with mild AR. .
Conclusions: These fndings confirm the appropriateness of ARIA guidelines in classifying the AR patients and the association of severe symptoms with unsuccessful drug treatment. The optimal targeting of patients to be treated with AIT needs to be reassessed
Time-dependent response of a zonally averaged ocean–atmosphere–sea ice model to Milankovitch forcing
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer-Verlag for personal use, not for redistribution. The definitive version was published in Climate Dynamics 6 (2010): 763-779, doi:10.1007/s00382-010-0790-6.An ocean-atmosphere-sea ice model is developed to explore the time-dependent
response of climate to Milankovitch forcing for the time interval 5-3 Myr BP. The ocean
component is a zonally averaged model of the circulation in five basins (Arctic, Atlantic,
Indian, Pacific, and Southern Oceans). The atmospheric component is a one-dimensional
(latitudinal) energy balance model, and the sea-ice component is a thermodynamic model.
Two numerical experiments are conducted. The first experiment does not include sea ice
and the Arctic Ocean; the second experiment does. Results from the two experiments are
used to investigate (i) the response of annual mean surface air and ocean temperatures to
Milankovitch forcing, and (ii) the role of sea ice in this response.
In both experiments, the response of air temperature is dominated by obliquity cycles
at most latitudes. On the other hand, the response of ocean temperature varies with latitude
and depth. Deep water formed between 45°N-65°N in the Atlantic Ocean mainly responds
to precession. In contrast, deep water formed south of 60°S responds to obliquity when sea
ice is not included. Sea ice acts as a time-integrator of summer insolation changes such that
annual mean sea-ice conditions mainly respond to obliquity. Thus, in the presence of sea
ice, air temperature changes over the sea ice are amplified, and temperature changes in deep
water of southern origin are suppressed since water below sea ice is kept near the freezing
point.This work was supported by an NSERC Discovery
Grant awarded to L.A.M. We also thank GEC3 for a Network Grant
How safe are the biologicals in treating asthma and rhinitis?
A number of biological agents are available or being investigated for the treatment of asthma and rhinitis. The safety profiles of these biologic agents, which may modify allergic and immunological diseases, are still being elucidated. Subcutaneous allergen immunotherapy, the oldest biologic agent in current use, has the highest of frequency of the most serious and life-threatening reaction, anaphylaxis. It is also one of the only disease modifying interventions for allergic rhinitis and asthma. Efforts to seek safer and more effective allergen immunotherapy treatment have led to investigations of alternate routes of delivery and modified immunotherapy formulations. Sublingual immunotherapy appears to be associated with a lower, but not zero, risk of anaphylaxis. No fatalities have been reported to date with sublingual immunotherapy. Immunotherapy with modified formulations containing Th1 adjuvants, DNA sequences containing a CpG motif (CpG) and 3-deacylated monophospholipid A, appears to provide the benefits of subcutaneous immunotherapy with a single course of 4 to 6 preseasonal injections. There were no serious treatment-related adverse events or anaphylaxis in the clinical trials of these two immunotherapy adjuvants. Omalizumab, a monoclonal antibody against IgE, has been associated with a small risk of anaphylaxis, affecting 0.09% to 0.2% of patients. It may also be associated with a higher risk of geohelminth infection in patients at high risk for parasitic infections but it does not appear to affect the response to treatment or severity of the infection
- …