13 research outputs found

    MPCVD processing of titanium-diffused LiNbO3 waveguides: optical characterisation and waveguide restoration

    Get PDF
    This paper presents some initial findings that explore the material properties of LiNbO3 which has been exposed to a microwave plasma-enhanced chemical vapor deposition (MPCVD) environment. The LiNbO3 was found to undergo a process known as 'reduction' when exposed to this environment. A technique was developed to reverse this process and recover the LiNbO3, which is a crucial first step towards the integration of diamond-based single photon sources with LiNbO3 waveguide technologies

    A highly efficient two level diamond based single photon source

    Full text link
    An unexplored diamond defect centre which is found to emit stable single photons at a measured rate of 1.6 MHz at room temperature is reported. The novel centre, identified in chemical vapour deposition grown diamond crystals, exhibits a sharp zero phonon line at 734 nm with a full width at half maximum of ~ 4 nm. The photon statistics confirm the center is a single emitter and provides direct evidence of the first true two-level single quantum system in diamond.Comment: 3 pages, 4 figure

    Nano-manipulation of diamond-based single photon sources

    Full text link
    The ability to manipulate nano-particles at the nano-scale is critical for the development of active quantum systems. This paper presents a new technique to manipulate diamond nano-crystals at the nano-scale using a scanning electron microscope, nano-manipulator and custom tapered optical fibre probes. The manipulation of a ~ 300 nm diamond crystal, containing a single nitrogen-vacancy centre, onto the endface of an optical fibre is demonstrated. The emission properties of the single photon source post manipulation are in excellent agreement with those observed on the original substrate.Comment: 6 pages, 4 figure

    Diamond single photon sources

    No full text
    We are currently developing a diamond single photon source based on patented technology held at the University of Melbourne. The key technology is the growth of diamond nanocrystals containing single photon sources directly on optical fibre endfaces.1 page(s

    Reactive ion etching of waveguide structures in diamond

    No full text
    Waveguide structures were fabricated in both nanocrystalline CVD diamond (NCD) and HPHT type 1b single crystal diamond using photolithography and reactive ion etching. The combination of these techniques allows the patterning of many long photonic structures simultaneously, making it easily scalable. Emphasis has been placed on reducing sidewall roughness to prevent loss due to scattering. In single crystal diamond a peak-to-peak roughness of approximately 10 nm (estimated from SEM images) was achieved for the majority of the structure sidewall

    Single shot laser writing with sub-nanosecond and nanosecond bursts of femtosecond pulses

    No full text
    Abstract A method is proposed for efficient laser modification of fused silica and sapphire by means of a burst of femtosecond pulses having time separation in the range 10–3000 ps. Modification enhancement with the pulse separation increase in the burst was observed on the tens picoseconds scale. It is proposed that accumulated transient tensile strain in the excitation region plays a crucial role in modification by a sub-nanosecond burst
    corecore