5,347 research outputs found
The parity-violating asymmetry in the 3He(n,p)3H reaction
The longitudinal asymmetry induced by parity-violating (PV) components in the
nucleon-nucleon potential is studied in the charge-exchange reaction 3He(n,p)3H
at vanishing incident neutron energies. An expression for the PV observable is
derived in terms of T-matrix elements for transitions from the {2S+1}L_J=1S_0
and 3S_1 states in the incoming n-3He channel to states with J=0 and 1 in the
outgoing p-3H channel. The T-matrix elements involving PV transitions are
obtained in first-order perturbation theory in the hadronic weak-interaction
potential, while those connecting states of the same parity are derived from
solutions of the strong-interaction Hamiltonian with the
hyperspherical-harmonics method. The coupled-channel nature of the scattering
problem is fully accounted for. Results are obtained corresponding to realistic
or chiral two- and three-nucleon strong-interaction potentials in combination
with either the DDH or pionless EFT model for the weak-interaction potential.
The asymmetries, predicted with PV pion and vector-meson coupling constants
corresponding (essentially) to the DDH "best values" set, range from -9.44 to
-2.48 in units of 10^{-8}, depending on the input strong-interaction
Hamiltonian. This large model dependence is a consequence of cancellations
between long-range (pion) and short-range (vector-meson) contributions, and is
of course sensitive to the assumed values for the PV coupling constants.Comment: 19 pages, 15 tables, revtex
Quantum sensitivity limit of a Sagnac hybrid interferometer based on slow-light propagation in ultra-cold gases
The light--matter-wave Sagnac interferometer based on ultra-slow light
proposed recently in (Phys. Rev. Lett. 92, 253201 (2004)) is analyzed in
detail. In particular the effect of confining potentials is examined and it is
shown that the ultra-slow light attains a rotational phase shift equivalent to
that of a matter wave, if and only if the coherence transfer from light to
atoms associated with slow light is associated with a momentum transfer and if
an ultra-cold gas in a ring trap is used. The quantum sensitivity limit of the
Sagnac interferometer is determined and the minimum detectable rotation rate
calculated. It is shown that the slow-light interferometer allows for a
significantly higher signal-to-noise ratio as possible in current matter-wave
gyroscopes.Comment: 12 pages, 6 figure
Experimental study of ultracold neutron production in pressurized superfluid helium
We have investigated experimentally the pressure dependence of the production
of ultracold neutrons (UCN) in superfluid helium in the range from saturated
vapor pressure to 20bar. A neutron velocity selector allowed the separation of
underlying single-phonon and multiphonon pro- cesses by varying the incident
cold neutron (CN) wavelength in the range from 3.5 to 10{\AA}. The predicted
pressure dependence of UCN production derived from inelastic neutron scattering
data was confirmed for the single-phonon excitation. For multiphonon based UCN
production we found no significant dependence on pressure whereas calculations
from inelastic neutron scattering data predict an increase of 43(6)% at 20bar
relative to saturated vapor pressure. From our data we conclude that applying
pressure to superfluid helium does not increase the overall UCN production rate
at a typical CN guide.Comment: 18 pages, 8 figures Version accepted for publication in PR
Polarized Neutron Laue Diffraction on a Crystal Containing Dynamically Polarized Proton Spins
We report on a polarized-neutron Laue diffraction experiment on a single
crystal of neodynium doped lanthanum magnesium nitrate hydrate containing
polarized proton spins. By using dynamic nuclear polarization to polarize the
proton spins, we demonstrate that the intensities of the Bragg peaks can be
enhanced or diminished significantly, whilst the incoherent background, due to
proton spin disorder, is reduced. It follows that the method offers unique
possibilities to tune continuously the contrast of the Bragg reflections and
thereby represents a new tool for increasing substantially the signal-to-noise
ratio in neutron diffraction patterns of hydrogenous matter.Comment: 5 pages, 3 figure
A Real Space Renormalization Group Approach to Field Evolution Equations
A new operator formalism for the reduction of degrees of freedom in the
evolution of discrete partial differential equations (PDE) via real space
Renormalization Group is introduced, in which cell-overlapping is the key
concept. Applications to 1+1-dimensional PDEs are presented for linear and
quadratic equations which are first order in time.Comment: 8 pages, 10 ps figures. Accepted for publication in Phys. Rev.
Pattern transfer of sub-micrometre-scaled structures into solid copper by laser embossing
Laser embossing allows the micron and submicron patterning of metal substrates that is of great interest in a wide range of applications. This replication process enables low-cost patterning of metallic materials by non-thermal, high-speed forming which is driven by laser-induced shock waves. In this study the surface topography characteristics as well as the material structure at laser embossing of sub-micrometre gratings into solid copper is presented. The topography of the laser-embossed copper pattern is analysed with atomic force microscopy (AFM) in comparison to the master surface. The height of the embossed structures and the replicated pattern fidelity increases up to a laser fluence of F ∼ 10 J/cm2. For higher laser fluences the height of the embossed structures saturates at 75% of the master pattern height and the shape is adequate to the master. Structural modifications in the copper mono crystals after the laser embossing process were investigated with transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD). Almost no modifications were detected. The residual stress after laser embossing of 32 MPa (F = 30 J/cm2) has only a limited influence on the surface pattern formation
The Feasibility of Imaging Myocardial Ischemic/Reperfusion Injury Using \u3csup\u3e99m\u3c/sup\u3eTc-labeled Duramycin in a Porcine Model
When pathologically externalized, phosphatidylethanolamine (PE) is a potential surrogate marker for detecting tissue injuries. 99mTc-labeled duramycin is a peptide-based imaging agent that binds PE with high affinity and specificity. The goal of the current study was to investigate the clearance kinetics of 99mTc-labeled duramycin in a large animal model (normal pigs) and to assess its uptake in the heart using a pig model of myocardial ischemia–reperfusion injury.
Methods
The clearance and distribution of intravenously injected 99mTc-duramycin were characterized in sham-operated animals (n = 5). In a closed chest model of myocardial ischemia, coronary occlusion was induced by balloon angioplasty (n = 9). 99mTc-duramycin (10–15 mCi) was injected intravenously at 1 hour after reperfusion. SPECT/CT was acquired at 1 and 3 hours after injection. Cardiac tissues were analyzed for changes associated with acute cellular injuries. Autoradiography and gamma counting were used to determine radioactivity uptake. For the remaining animals, 99mTc-tetrafosamin scan was performed on the second day to identify the infarct site.
Results
Intravenously injected 99mTc-duramycin cleared from circulation predominantly via the renal/urinary tract with an α-phase half-life of 3.6 ± 0.3 minutes and β-phase half-life of 179.9 ± 64.7 minutes. In control animals, the ratios between normal heart and lung were 1.76 ± 0.21, 1.66 ± 0.22, 1.50 ± 0.20 and 1.75 ± 0.31 at 0.5, 1, 2 and 3 hours post-injection, respectively. The ratios between normal heart and liver were 0.88 ± 0.13, 0.80 ± 0.13, 0.82 ± 0.19 and 0.88 ± 0.14. In vivo visualization of focal radioactivity uptake in the ischemic heart was attainable as early as 30 min post-injection. The in vivo ischemic-to-normal uptake ratios were 3.57 ± 0.74 and 3.69 ± 0.91 at 1 and 3 hours post-injection, respectively. Ischemic-to-lung ratios were 4.89 ± 0.85 and 4.93 ± 0.57; and ischemic-to-liver ratios were 2.05 ± 0.30 to 3.23 ± 0.78. The size of 99mTc-duramycin positive myocardium was qualitatively larger than the infarct size delineated by the perfusion defect in 99mTc-tetrafosmin uptake. This was consistent with findings from tissue analysis and autoradiography.
Conclusion
99mTc-duramycin was demonstrated, in a large animal model, to have suitable clearance and biodistribution profiles for imaging. The agent has an avid target uptake and a fast background clearance. It is appropriate for imaging myocardial injury induced by ischemia/reperfusion
- …