4,188 research outputs found

    Corrigenda to and validation of Ozophora woodruffi Slater 2005 (Hemiptera: Lygaeidae)

    Get PDF
    Important missing specimen data are provided for the original description of Ozophora woodruffi Slater (2005: 245) (Hemiptera: Lygaeidae), along with additional comparative relationships. Because of the missing type information, according to ICZN rules (1999), the species became a nomen nudum. This paper now serves to validate the name, and authorship becomes Slater (2012)

    The adsorption structure of furan on Pd(1 1 1)

    Get PDF
    The structure of molecular furan, C4H4O, on Pd(1 1 1) has been investigated by O K-edge near-edge X-ray absorption fine structure (NEXAFS) and C 1s scanned-energy mode photoelectron diffraction (PhD). NEXAFS shows the molecule to be adsorbed with the molecular plane close to parallel to the surface, a conclusion confirmed by the PhD analysis. Chemical-state specific C 1s PhD data were obtained for the two inequivalent C atoms in the furan, the α-C atoms adjacent to the O atom, and the ÎČ-C atoms bonded only to C atoms, but only the PhD modulations for the α-C emitters were of sufficiently large amplitude for detailed evaluation using multiple scattering calculations. This analysis shows the α-C atoms to be located approximately 0.6 Å off-atop surface Pd atoms with an associated C–Pd bondlength of 2.13 ± 0.03 Å. Two alternative local geometries consistent with the data place the O atom in off-atop or near-hollow locations, and for each of these local structures there are two equally-possible registries relative to the fcc and hcp hollow sites. The results are in good agreement with earlier density functional theory calculations which indicate that the fcc and hcp registries are equally probable, but the PhD results fail to distinguish the two distinct local bonding geometries

    A structural study of a C3H3 species coadsorbed with CO on Pd(1 1 1)

    Get PDF
    The combination of chemical-state-specific C 1s scanned-energy mode photoelectron diffraction (PhD) and O K-edge near-edge X-ray absorption fine structure (NEXAFS) has been used to determine the local adsorption geometry of the coadsorbed C3H3 and CO species formed on Pd(1 1 1) by dissociation of molecular furan. CO is found to adopt the same geometry as in the Pd(1 1 1)c(4 × 2)-CO phase, occupying the two inequivalent three-fold coordinated hollow sites with the C–O axis perpendicular to the surface. C3H3 is found to lie with its molecular plane almost parallel to the surface, most probably with the two ‘outer’ C atoms in equivalent off-atop sites, although the PhD analysis formally fails to distinguish between two distinct local adsorption sites

    The Effect of Rat Spleen Cells on Two Transplanted Mouse Tumours

    Get PDF
    IT was reported in a previous paper (Woodruff and Symes, 1962a) that the growth, in A-strain mice, of subcutaneous transplants of a mammary carcinoma which originated in this strain, could be greatly retarded, and the tumour could sometimes be completely destroyed, by giving a sublethal dose of whole body irradiation followed by an intravenous injection of allogeneic spleen cells from either a normal CBA mouse or a CBA mouse which had been immunized against the A-strain tumour. Due to the concomitant induction of graft-versus-host disease, however, these procedures sometimes resulted in early death of the treated animals while the growth of their tumours remained arrested. The present experiments are concerned with the effect of an intraperitoneal injection of heterogeneic spleen cells from normal or pre-immunized rats, preceded in some cases by sublethal whole body irradiation, on mice previously injected by the same route with the Landschutz ascites tumour or with a cell suspension prepared from an A-strain mammary carcinoma. Previous observations on the anti-tumour effect of heterogeneic cells have bee

    Tension and stiffness of the hard sphere crystal-fluid interface

    Full text link
    A combination of fundamental measure density functional theory and Monte Carlo computer simulation is used to determine the orientation-resolved interfacial tension and stiffness for the equilibrium hard-sphere crystal-fluid interface. Microscopic density functional theory is in quantitative agreement with simulations and predicts a tension of 0.66 kT/\sigma^2 with a small anisotropy of about 0.025 kT and stiffnesses with e.g. 0.53 kT/\sigma^2 for the (001) orientation and 1.03 kT/\sigma^2 for the (111) orientation. Here kT is denoting the thermal energy and \sigma the hard sphere diameter. We compare our results with existing experimental findings

    Adsorption structure of glycine on TiO2(1 1 0): a photoelectron diffraction determination

    Get PDF
    High-resolution core-level photoemission and scanned-energy mode photoelectron diffraction (PhD) of the O 1s and N 1s states have been used to investigate the interaction of glycine with the rutile TiO2(1 1 0) surface. Whilst there is clear evidence for the presence of the zwitterion View the MathML sourceCH2COO− with multilayer deposition, at low coverage only the deprotonated glycinate species, NH2CH2COO is present. Multiple-scattering simulations of the O 1s PhD data show the glycinate is bonded to the surface through the two carboxylate O atoms which occupy near-atop sites above the five-fold-coordinated surface Ti atoms, with a Ti–O bondlength of 2.12 ± 0.06 Å. Atomic hydrogen arising from the deprotonation is coadsorbed to form hydroxyl species at the bridging oxygen sites with an associated Ti–O bondlength of 2.01 ± 0.03 Å. Absence of any significant PhD modulations of the N 1s emission is consistent with the amino N atom not being involved in the surface bonding, unlike the case of glycinate on Cu(1 1 0) and Cu(1 0 0)

    Identifying the Azobenzene/Aniline reaction intermediate on TiO2-(110) : a DFT Study

    Get PDF
    Density functional theory (DFT) calculations, both with and without dispersion corrections, have been performed to investigate the nature of the common surface reaction intermediate that has been shown to exist on TiO2(110) as a result of exposure to either azobenzene (C6H5N═NC6H5) or aniline (C6H5NH2). Our results confirm the results of a previous DFT study that dissociation of azobenzene into two adsorbed phenyl imide (C6H5N) fragments, as was originally proposed, is not energetically favorable. We also find that deprotonation of aniline to produce this surface species is even more strongly energetically disfavored. A range of alternative surface species has been considered, and while dissociation of azobenzene to form surface C6H4NH species is energetically favored, the same surface species cannot form from adsorbed aniline. On the contrary, adsorbed aniline is much the most stable surface species. Comparisons with experimental determinations of the local adsorption site, the Ti–N bond length, the molecular orientation, and the associated C 1s and N 1s photoelectron core level shifts are all consistent with the DFT results for adsorbed aniline and are inconsistent with other adsorbed species considered. Possible mechanisms for the hydrogenation of azobenzene required to produce this surface species are discussed

    Photoelectron diffraction investigation of the structure of the clean TiO2(110)(1×1) surface

    Get PDF
    The surface relaxations of the rutile TiO2(110)(1×1) clean surface have been determined by O 1 s and Ti 2p3∕2 scanned-energy mode photoelectron diffraction. The results are in excellent agreement with recent low-energy electron diffraction (LEED) and medium energy ion scattering (MEIS) results, but in conflict with the results of some earlier investigations including one by surface x-ray diffraction. In particular, the bridging O atoms at the surface are found to relax outward, rather than inward, relative to the underlying bulk. Combined with the recent LEED and MEIS results, a consistent picture of the structure of this surface is provided. While the results of the most recent theoretical total-energy calculations are qualitatively consistent with this experimental consensus, significant quantitative differences remain
    • 

    corecore