274 research outputs found

    Four-gap glass RPC as a candidate to a large area thin time-of-flight detector

    Get PDF
    A four-gap glass RPC with 0.3mm gap size was tested with hadron beam as a time-of-flight detector having a time resolution of ~ 100ps. A thickness of the detector together with front-end electronics is ~ 12mm. Results on time resolution dependently on a pad size are presented. This paper contains first result on the timing RPC (with ~ 100ps resolution) having a strip read-out. Study has been done within the HARP experiment (CERN-PS214) R&D work. A obtaned data can be useful if a design of a large area thin timing detector has to be done.Comment: 18 pages, 13 figure

    Polaris B, an optical companion of Polaris (alpha UMi) system: atmospheric parameters, chemical composition, distance and mass

    Full text link
    We present an analysis of high-resolution spectroscopic observations of Polaris B, the optical companion of the Polaris Ab system. The star has a radial velocity V_r of -16.6km/s to -18.9km/s, and a projected rotational velocity vsini=110 km/s. The derived atmospheric parameters are: Teff=6900K; logg=4.3; V_t=2.5km/s. Polaris B has elemental abundances generally similar to those of the Cepheid Polaris A (Usenko et al. 2005a), although carbon, sodium and magnesium are close to the solar values. At a spectral type of F3V Polaris B has a luminosity of 3.868L_sun, an absolute magnitude of +3.30mag, and a distance of 109.5pc. The mass of the star is estimated to be 1.39M_sun, close to a mass of 1.38+/-0.61M_sun for the recently-resolved orbital periods companion Polaris Ab observed by Evans et al. (2007).Comment: 6 pages, 3 figures, 1 tabl

    Revisiting the 'LSND anomaly' II: critique of the data analysis

    Full text link
    This paper, together with a preceding paper, questions the so-called 'LSND anomaly': a 3.8 sigma excess of antielectronneutrino interactions over standard backgrounds, observed by the LSND Collaboration in a beam dump experiment with 800 MeV protons. That excess has been interpreted as evidence for the antimuonneutrino to antielectronneutrino oscillation in the \Deltam2 range from 0.2 eV2 to 2 eV2. Such a \Deltam2 range is incompatible with the widely accepted model of oscillations between three light neutrino species and would require the existence of at least one light 'sterile' neutrino. In a preceding paper, it was concluded that the estimates of standard backgrounds must be significantly increased. In this paper, the LSND Collaboration's estimate of the number of antielectronneutrino interactions followed by neutron capture, and of its error, is questioned. The overall conclusion is that the significance of the 'LSND anomaly' is not larger than 2.3 sigma.Comment: 30 pages, 16 figures, 6 table

    Reply to 'Corrections to the HARP-CDP Analysis of the LSND Neutrino Oscillation Backgrounds'

    Full text link
    The alleged mistakes in recent papers that reanalyze the backgrounds to the 'LSND anomaly' do not exist. We maintain our conclusion that the significance of the 'LSND anomaly' is not 3.8 sigma but not larger than 2.3 sigma.Comment: 3 page

    Why the paper CERN-PH-EP-2009-015 (arXiv:0903.4762) is scientifically unacceptable

    Full text link
    The paper CERN-PH-EP-2009-015 (arXiv:0903.4762) by A. Bagulya et al. violates standards of quality of work and scientific ethics on several counts. The paper contains assertions that contradict established detector physics. The paper falls short of proving the correctness of the authors' concepts and results. The paper ignores or quotes misleadingly pertinent published work. The paper ignores the fact that the authors' concepts and results have already been shown wrong in the published literature. The authors seem unaware that cross-section results from the 'HARP Collaboration' that are based on the paper's concepts and algorithms are in gross disagreement with the results of a second analysis of the same data, and with the results of other experiments.Comment: 8 pages, 3 figure
    • …
    corecore